- Like
- Digg
- Del
- Tumblr
- VKontakte
- Flattr
- Buffer
- Love This
- Odnoklassniki
- ManageWP.org
- Meneame
- Blogger
- Amazon
- Yahoo Mail
- Gmail
- AOL
- Newsvine
- HackerNews
- Evernote
- MySpace
- Mail.ru
- Viadeo
- Line
- Comments
- Yummly
- SMS
- Viber
- Telegram
- Subscribe
- Skype
- Facebook Messenger
- Kakao
- LiveJournal
- Yammer
- Edgar
- Fintel
- Mix
- Instapaper
- Copy Link

*Computing Current Carrying Capacity*

The following section presents some examples on how to calculate the load carrying capacity of aircraft electrical wire. The calculation is a step by step approach and several graphs are used to obtain information to compute the current carrying capacity of a particular wire.

Example 1

Assume a harness (open or braided) consisting of 10 wires, size 20, 200 °C rated copper, and 25 wires size 22, 200 °C rated copper, is installed in an area where the ambient temperature is 60 °C and the aircraft is capable of operating at a 35,000 foot altitude. Circuit analysis reveals that 7 of the 35 wires in the bundle (7⁄35 = 20 percent) are carrying power currents near or up to capacity.

Step 1—Refer to the single wire in free air curves in Figure 9-114. Determine the change of temperature of the wire to determine free air ratings. Since the wire is in an ambient temperature of 60 °C and rated at 200 °C, the change of the temperature is 200 °C – 60 °C = 140 °C. Follow the 140 °C temperature difference horizontally until it intersects with wire size line on Figure 9-113. The free air rating for size 20 is 21.5 amps, and the free air rating for size 22 is 16.2 amps.

Step 2—Refer to the bundle derating curves in Figure 9-118. The 20 percent curve is selected since circuit analysis indicate that 20 percent or less of the wire in the harness would be carrying power currents and less than 20 percent of the bundle capacity would be used. Find 35 (on the horizontal axis), since there are 35 wires in the bundle, and determine a derating factor of 0.52 (on the vertical axis) from the 20 percent curve.

Step 3—Derate the size 22 free air rating by multiplying 16.2 by 0.52 to get 8.4 amps in harness rating. Derate the size 20 free air rating by multiplying 21.5 by 0.52 to get 11.2 amps in-harness rating.Step 4—Refer to the altitude derating curve of Figure 9-119. Look for 35,000 feet (on the horizontal axis) since that is the altitude at which the aircraft is operating. Note that the wire must be derated by a factor of 0.86 (found on the vertical axis). Derate the size 22 harness rating by multiplying 8.4 amps by 0.86 to get 7.2 amps. Derate the size 20 harness rating by multiplying 11.2 amps by 0.86 to get 9.6 amps.

Step 5—To find the total harness capacity, multiply the total number of size 22 wires by the derated capacity (25 × 7.2 = 180.0 amps) and add to that the number of size 20 wires multiplied by the derated capacity (10 × 9.6 = 96.8 amps) and multiply the sum by the 20 percent harness capacity factor. Thus, the total harness capacity is (180.0 + 96.0) × 0.20 = 55.2 amps. It has been determined that the total harness current should not exceed 55.2 A, size 22 wire should not carry more than 7.2 amps and size 20 wire should not carry more than 9.6 amps.Step 6—Determine the actual circuit current for each wire in the bundle and for the whole bundle. If the values calculated in step 5 are exceeded, select the next larger size wire and repeat the calculations.

Example 2

Assume a harness (open or braided), consisting of 12 size 12, 200 °C rated copper wires, is operated in an ambient temperature of 25 °C at sea level and 60 °C at a 20,000- foot altitude. All 12 wires are operated at or near their maximum capacity.

Step 1—Refer to the single wire in free air curve in Figure 9-117, determine the temperature difference of the wire to determine free air ratings. Since the wire is in ambient temperature of 25 °C and 60 °C and is rated at 200 °C, the temperature differences are 200 °C – 25 °C = 175 °C and 200 °C – 60 °C = 140 °C, respectively. Follow the 175 °C and the 140 °C temperature difference lines on Figure 9-116 until each intersects wire size line. The free air ratings of size 12 are 68 amps and 59 amps, respectively.

Step 2—Refer to the bundling derating curves in Figure 9-120. The 100 percent curve is selected because we know all 12 wires are carrying full load. Find 12 (on the horizontal axis) since there are 12 wires in the bundle and determine a derating factor of 0.43 (on the vertical axis) from the 100 percent curve.Step 3—Derate the size #12 free air ratings by multiplying 68 amps and 61 amps by 0.43 to get 29.2 amps and 25.4 amps, respectively.

Step 4—Refer to the altitude derating curve of Figure 9-119, look for sea level and 20,000 feet (on the horizontal axis) since these are the conditions at which the load is carried. The wire must be derated by a factor of 1.0 and 0.91, respectively.

Step 5—Derate the size 12 in a bundle ratings by multiplying 29.2 amps at sea level and 25.4 amps at 20,000 feet by 1.0 and 0.91, respectively to obtain 29.2 amps and 23.1 amps. The total bundle capacity at sea level and 25 °C ambient temperature is 29.2 × 12=350.4 amps. At 20,000 feet and 60 °C ambient temperature, the bundle capacity is 23.1 × 12=277.2 amps. Each size 12 wire can carry 29.2 amps at sea level, 25 °C ambient temperature or 23.1 amps at 20,000 feet and 60 °C ambient temperature.Step 6—Determine the actual circuit current for each wire in the bundle and for the bundle. If the values calculated in Step 5 are exceeded, select the next larger size wire and repeat the calculations.