Emergency Splicing Repairs
Broken wires can be repaired by means of crimped splices, by using terminal lugs from which the tongue has been cut off, or by soldering together and potting broken strands. These repairs are applicable to copper wire. Damaged aluminum wire must not be temporarily spliced. These repairs are for temporary emergency use only and should be replaced as soon as possible with permanent repairs. Since some manufacturers prohibit splicing, the applicable manufacturer’s instructions should always be consulted.
Junction Boxes
Junction boxes are used for collecting, organizing, and distributing circuits to the appropriate harnesses that are attached to the equipment. [Figure 9-157] Junction boxes are also used to conveniently house miscellaneous components, such as relays and diodes. Junction boxes that are used in high-temperature areas should be made of stainless steel.

Replacement junction boxes should be fabricated using the same material as the original or from a fire-resistant, nonabsorbent material, such as aluminum, or an acceptable plastic material. Where fireproofing is necessary, a stainless steel junction box is recommended. Rigid construction prevents oil-canning of the box sides that could result in internal short circuits. In all cases, drain holes should be provided in the lowest portion of the box. Cases of electrical power equipment must be insulated from metallic structure to avoid ground fault related fires.
The junction box arrangement should permit easy access to any installed items of equipment, terminals, and wires. Where marginal clearances are unavoidable, an insulating material should be inserted between current carrying parts and any grounded surface. It is not good practice to mount equipment on the covers or doors of junction boxes, since inspection for internal clearance is impossible when the door or cover is in the closed position.
Junction boxes should be securely mounted to the aircraft structure in such a manner that the contents are readily accessible for inspection. When possible, the open side should face downward or at an angle so that loose metallic objects, such as washers or nuts, tend to fall out of the junction box rather than wedge between terminals.
Junction box layouts should take into consideration the necessity for adequate wiring space and possible future additions. Electrical wire bundles should be laced or clamped inside the box so that cables do not touch other components, prevent ready access, or obscure markings or labels. Cables at entrance openings should be protected against chafing by using grommets or other suitable means.
AN/MS Connectors
Connectors (plugs and receptacles) facilitate maintenance when frequent disconnection is required. There is a multitude of types of connectors. The connector types that use crimped contacts are generally used on aircraft. Some of the more common types are the round cannon type, the rectangular, and the module blocks. Environmentally resistant connectors should be used in applications subject to fluids, vibration, heat, mechanical shock, and/or corrosive elements.
When HIRF/lightning protection is required, special attention should be given to the terminations of individual or overall shields. The number and complexity of wiring systems have resulted in an increased use of electrical connectors. [Figure 9-158] The proper choice and application of connectors is a significant part of the aircraft wiring system. Connectors must be kept to a minimum, selected, and installed to provide the maximum degree of safety and reliability to the aircraft. For the installation of any particular connector assembly, the specification of the manufacturer or the appropriate governing agency must be followed.

Types of Connector
Connectors must be identified by an original identification number derived from MIL Specification (MS) or OEM specification. Figure 9-159 provides information about MS style connectors.

Rectangular connectors are typically used in applications where a very large number of circuits are accommodated in a single mated pair. [Figure 9-160] They are available with a great variety of contacts, which can include a mix of standard, coaxial, and large power types. Coupling is accomplished by various means. Smaller types are secured with screws which hold their flanges together. Larger ones have integral guide pins that ensure correct alignment, or jackscrews that both align and lock the connectors. Rack and panel connectors use integral or rack-mounted pins for alignment and box mounting hardware for couplings.

Module blocks are types of junctions that accept crimped contacts similar to those on connectors. Some use internal busing to provide a variety of circuit arrangements. They are useful where a number of wires are connected for power or signal distribution. When used as grounding modules, they save and reduce hardware installation on the aircraft. Standardized modules are available with wire end grommet seals for environmental applications and are track mounted. Function module blocks are used to provide an easily wired package for environment-resistant mounting of small resistors, diodes, filters, and suppression networks. In-line terminal junctions are sometimes used in lieu of a connector when only a few wires are terminated and when the ability to disconnect the wires is desired. The in-line terminal junction is environment resistant. The terminal junction splice is small and may be tied to the surface of a wire bundle when approved by the OEM.
Voltage and Current Rating
Selected connectors must be rated for continuous operation under the maximum combination of ambient temperature and circuit current load. Hermetic connectors and connectors used in circuit applications involving high-inrush currents should be derated. It is good engineering practice to conduct preliminary testing in any situation where the connector is to operate with most or all of its contacts at maximum rated current load. When wiring is operating with a high conductor temperature near its rated temperature, connector contact sizes should be suitably rated for the circuit load. This may require an increase in wire size. Voltage derating is required when connectors are used at high altitude in nonpressurized areas.
Flight Mechanic Recommends
