Gyroscopic instruments are essential instruments used on all aircraft. They provide the pilot with critical attitude and directional information and are particularly important while flying under IFR. The sources of power for these instruments can vary. The main requirement is to spin the gyroscopes at a high rate of speed. Originally, gyroscopic instruments were strictly vacuum driven. A vacuum source pulled air across the gyro inside the instruments to make the gyros spin. Later, electricity was added as a source of power. The turning armature of an electric motor doubles as the gyro rotor. In some aircraft, pressure, rather than vacuum, is used to induce the gyro to spin. Various systems and powering configurations have been developed to provide reliable operation of the gyroscopic instruments.
Vacuum Systems
Vacuum systems are very common for driving gyro instruments. In a vacuum system, a stream of air directed against the rotor vanes turns the rotor at high speed. The action is similar to a water wheel. Air at atmospheric pressure is first drawn through a filter(s). It is then routed into the instrument and directed at vanes on the gyro rotor. A suction line leads from the instrument case to the vacuum source. From there, the air is vented overboard. Either a venturi or a vacuum pump can be used to provide the vacuum required to spin the rotors of the gyro instruments.
The vacuum value required for instrument operation is usually between 3½ inches to 4½ inches of mercury. It is usually adjusted by a vacuum relief valve located in the supply line.
Some turn-and-bank indicators require a lower vacuum setting. This can be obtained through the use of an additional regulating valve in the turn and bank vacuum supply line.
Venturi Tube Systems
The velocity of the air rushing through a venturi can create sufficient suction to spin instrument gyros. A line is run from the gyro instruments to the throat of the venturi mounted on the outside of the airframe. The low pressure in the venturi tube pulls air through the instruments, spins the gyros, and expels the air overboard through the venturi. This source of gyro power is used on many simple, early aircraft.
A light, single-engine aircraft can be equipped with a 2-inch venturi (2 inches of mercury vacuum capacity) to operate the turn and bank indicator. It can also have a larger 8-inch venturi to power the attitude and heading indicators. Simplified illustrations of these venturi vacuum systems are shown in Figure 10-87. Normally, air going into the instruments is filtered.

Engine-Driven Vacuum Pump
The vane-type engine-driven pump is the most common source of vacuum for gyros installed in general aviation, light aircraft. One type of engine-driven pump is geared to the engine and is connected to the lubricating system to seal, cool, and lubricate the pump. Another commonly used pump is a dry vacuum pump. It operates without external lubrication and installation requires no connection to the engine oil supply. It also does not need the air oil separator or gate check valve found in wet pump systems. In many other respects, the dry pump system and oil lubricated system are the same. [Figure 10-88]
When a vacuum pump develops a vacuum (negative pressure), it also creates a positive pressure at the outlet of the pump. This pressure is compressed air. Sometimes, it is utilized to operate pressure gyro instruments. The components for pressure systems are much the same as those for a vacuum system as listed below. Other times, the pressure developed by the vacuum pump is used to inflate de-ice boots or inflatable seals or it is vented overboard.
An advantage of engine-driven pumps is their consistent performance on the ground and in flight. Even at low engine rpm, they can produce more than enough vacuum so that a regulator in the system is needed to continuously provide the correct suction to the vacuum instruments. As long as the engine operates, the relatively simple vacuum system adequately spins the instrument gyros for accurate indications. However, engine failure, especially on single-engine aircraft, could leave the pilot without attitude and directional information at a critical time. To thwart this shortcoming, often the turn and bank indicator operates with an electrically driven gyro that can be driven by the battery for a short time. Thus, when combined with the aircraft’s magnetic compass, sufficient attitude and directional information is still available.
Multiengine aircraft typically contain independent vacuum systems for the pilot and copilot instruments driven by separate vacuum pumps on each of the engines. Should an engine fail, the vacuum system driven by the still operating engine supplies a full complement of gyro instruments. An interconnect valve may also be installed to connect the failed instruments to the still operational pump.
Flight Mechanic Recommends
