• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
  • Tip Jar
You are here: Home / Airframe / Aircraft Instrument Systems / Maintenance of Instruments and Instrument Systems (Part Two)

Maintenance of Instruments and Instrument Systems (Part Two)

Filed Under: Aircraft Instrument Systems

Magnetic Compass Maintenance and Compensation

The magnetic compass is a simple instrument that does not require setting or a source of power. A minimum of maintenance is necessary, but the instrument is delicate and should be handled carefully during inspection. The following items are usually included in an inspection:

  1. The compass indicator should be checked for correct readings on various cardinal headings and recompensated if necessary.
  2. Moving parts of the compass should work easily.
  3. The compass bowl should be correctly suspended on an antivibration device and should not touch any part of the metal container.
  4. The compass bowl should be filled with liquid. The liquid should not contain any bubbles or have any discoloration.
  5. The scale should be readable and be well lit.
 

Compass magnetic deviation is caused by electromagnetic interference from ferrous materials and operating electrical components in the cockpit. Deviation can be reduced by swinging the compass and adjusting its compensating magnets. An example of how to perform this calibration process is given below. The results are recorded on a compass correction card which is placed near the compass in the cockpit. [Figure 10-139]

Figure 10-139. A magnetic compass with a deviation correction card attached, on which the results of swinging the compass should be recorded.
Figure 10-139. A magnetic compass with a deviation correction card attached, on which the results of swinging the compass should be recorded.

There are various ways to swing a compass. The following is meant as a representative method. Follow the aircraft manufacturer’s instructions for method and frequency of swinging the magnetic compass. This is usually accomplished at flight hour or calendar intervals. Compass calibration is also performed when a new electric component is added to the cockpit, such as a new radio. A complete list of conditions requiring a compass swing and procedure can be found in FAA Advisory Circular (AC) 43.13-1 (as revised), Chapter 12-37.

 

To swing a compass, a compass rose is required. Most airports have one painted on the tarmac in a low-traffic area where maintenance personnel can work. One can also be made with chalk and a good compass. The area where the compass rose is laid out should be far from any possible electromagnetic disturbances, including those underground, and should remain clear of any ferrous vehicles or large equipment while the procedure takes place. [Figure 10-140]

Figure 10-140. The compass rose on this airport ramp can be used to swing an aircraft magnetic compass.
Figure 10-140. The compass rose on this airport ramp can be used to swing an aircraft magnetic compass.

The aircraft should be in level flight attitude for the compass swing procedure. Tail draggers need to have the aft end of the fuselage propped up, preferably with wood, aluminum, or some other nonferrous material. The aircraft interior and baggage compartments should be free from miscellaneous items that might interfere with the compass. All normal equipment should be on board and turned on to simulate a flight condition. The engine(s) should be running.

The basic idea when swinging a compass is to note the deviation along the north-south radial and the east-west radial. Then, adjust the compensating magnets of the compass to eliminate as much deviation as possible. Begin by centering or zeroing the compass’ compensating magnets with a non-ferrous screw driver. Align the longitudinal axis of the aircraft on the N-S radial facing north. Adjust the N-S compensating screw so the indication is 0°. Next, align the longitudinal axis of the aircraft on the E-W radial facing east. Adjust the E-W compensating screw so that the compass indicates 90°. Now, move the aircraft to be aligned with the N-S radial facing south. If the compass indicates 180°, there is no deviation while the aircraft is heading due north or due south. However, this is unlikely. Whatever the southfacing indication is, adjust the N-S compensating screw to eliminate half of the deviation from 180°. Continue around to face the aircraft west on the E-W radial, and use the E-W compensating screw to eliminate half of the west-facing deviation from 270°.

Once this is done, return the aircraft to alignment with the N-S radial facing north and record the indication. Up to 10° deviation is allowed. Align the aircraft with the radials every 30° around the compass rose and record each indication on the compass compensation card. Date and sign the card and place it in full view of the pilot near the compass in the cockpit.

 

Vacuum System Maintenance

Errors in the indication presented on a vacuum gyroscopic instrument could be the result of any factor that prevents the vacuum system from operating within the design suction limits. Errors can also be caused by problems within the instrument, such as friction, worn parts, or broken parts. Any source that disturbs the free rotation of the gyro at design speed is undesirable resulting in excessive precession and failure of the instruments to maintain accurate indication. The aircraft technician is responsible for the prevention or correction of vacuum system malfunctions. Usually this consists of cleaning or replacing filters, checking and correcting insufficient vacuum, or removing and replacing the vacuum pump or instruments. A list of the most common malfunctions, together with their correction, is included in Figure 10-141.

Figure 10-141. Vacuum system troubleshooting guide.
Figure 10-141. Vacuum system troubleshooting guide. [click image to enlarge]
Autopilot System Maintenance

The information in this section does not apply to any particular autopilot system, but gives general information that relates to all autopilot systems. Maintenance of an autopilot system consists of visual inspection, replacement of components, cleaning, lubrication, and an operational checkout of the system. Consult the manufacturer’s maintenance manual for all of these procedures.

With the autopilot disengaged, the flight controls should function smoothly. The resistance offered by the autopilot servos should not affect the control of the aircraft. The interconnecting mechanisms between the autopilot system and the flight control system should be correctly aligned and smooth in operation. When applicable, the operating cables should be checked for tension.

An operational check is important to assure that every circuit is functioning properly. An autopilot operational check should be performed on new installations, after replacement of an autopilot component, or whenever a malfunction in the autopilot is suspected.

After the aircraft’s main power switch has been turned on, allow the gyros to come up to speed and the amplifier to warm up before engaging the autopilot. Some systems are designed with safeguards that prevent premature autopilot engagement. While holding the control column in the normal flight position, engage the autopilot system using the switch on the autopilot controller.

After the system is engaged, perform the operational checks specified for the particular aircraft. In general, the checks are as follows:

  1. Rotate the turn knob to the left; the left rudder pedal should move forward, and the control column wheel should move to the left and slightly aft.
  2. Rotate the turn knob to the right; the right rudder pedal should move forward, and the control column wheel should move to the right and slightly aft. Return the turn knob to the center position; the flight controls should return to the level-flight position.
  3. Rotate the pitch-trim knob forward; the control column should move forward.
  4. Rotate the pitch-trim knob aft; the control column should move aft.

If the aircraft has a pitch-trim system installed, it should function to add down-trim as the control column moves forward and add up-trim as the column moves aft. Many pitch-trim systems have an automatic and a manual mode of operation. The above action occurs only in the automatic mode.

Check to see if it is possible to manually override or overpower the autopilot system in all control positions. Center all the controls when the operational checks have been completed.

Disengage the autopilot system and check for freedom of the control surfaces by moving the control columns and rudder pedals. Then, reengage the system and check the emergency disconnect release circuit. The autopilot should disengage each time the release button on the control yoke is actuated.

When performing maintenance and operational checks on a specific autopilot system, always follow the procedure recommended by the aircraft or equipment manufacturer.

LCD Display Screens

Electronic and digital instrument systems utilizing LCD technology may have special considerations for the care of the display screens. Antireflective coatings are sometimes used to reduce glare and make the displays more visible. These treatments can be degraded by human skin oils and certain cleaning agents, such as those containing ammonia. It is very important to clean the display lens using a clean, lint-free cloth and a cleaner that is specified as safe for antireflective coatings, preferable one recommended by the aircraft manufacturer.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   
-->

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2022 Flight-Mechanic.com