• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
  • Tip Jar
You are here: Home / Powerplant / Aircraft Engines / Gas Turbine Engines – Turbine Section (Part Three)
Regretfully, Flight-Mechanic will be turning out the lights after fifteen years. Google, in its infinite wisdom, has chosen to remove Flight-Mechanic from its search results (the claim is that the content on this site is spam). We appealed their decision to shut us down, to no avail.

Unfortunately, since Google has a monopoly over internet search, this means that traffic levels on the site will drop to a level that makes maintaining it uneconomic. As time progresses, we will no longer be able to maintain the server space and will remove the site from the internet. Thanks to all who have supported us over the years.

To fight back against the monopolistic practices of companies like Google, we recommend using a competing search engine such as Brave (you get the added benefit of not being spied on by Big Tech) and advocating for anti-trust legislation from your representatives.

Gas Turbine Engines – Turbine Section (Part Three)

Filed Under: Aircraft Engines

Turbine blades may be either forged or cast, depending on the composition of the alloys. Most blades are precision cast and finish ground to the desired shape. Many turbine blades are cast as a single crystal, which gives the blades better strength and heat properties. Heat barrier coating, such as ceramic coating, and air flow cooling help keep the turbine blades and inlet nozzles cooler. This allows the exhaust temperature to be raised, increasing the efficiency of the engine. Figure 1-66 shows a turbine blade with air holes for cooling purposes.

Figure 1-66. Turbine blade with cooling holes.
Figure 1-66. Turbine blade with cooling holes.

Most turbines are open at the outer perimeter of the blades; however, a second type called the shrouded turbine is sometimes used. The shrouded turbine blades, in effect, form a band around the outer perimeter of the turbine wheel. This improves efficiency and vibration characteristics, and permits lighter stage weights. On the other hand, it limits turbine speed and requires more blades. [Figure 1-67]

Figure 1-67. Shrouded turbine blades.
Figure 1-67. Shrouded turbine blades.

In turbine rotor construction, it occasionally becomes necessary to utilize turbines of more than one stage. A single turbine wheel often cannot absorb enough power from the exhaust gases to drive the components dependent on the turbine for rotative power; thus, it is necessary to add additional turbine stages.

A turbine stage consists of a row of stationary vanes or nozzles, followed by a row of rotating blades. In some models of turboprop engine, as many as five turbine stages have been utilized successfully. It should be remembered that, regardless of the number of wheels necessary for driving engine components, there is always a turbine nozzle preceding each wheel.

As was brought out in the preceding discussion of turbine stages, the occasional use of more than one turbine wheel is warranted in cases of heavy rotational loads. It should also be pointed out that the same loads that necessitate multistage turbines often make it advantageous to incorporate multiple compressor rotors.

Figure 1-68. Single-stage rotor turbine.
Figure 1-68. Single-stage rotor turbine.

In the single-stage rotor turbine, the power is developed by one turbine rotor, and all engine-driven parts are driven by this single wheel. [Figure 1-68] This arrangement is used on engines where the need for low weight and compactness predominates. This is the simplest version of the pure turbojet engine. A multistage turbine is shown in Figure 1-69.

Figure 1-69. Multirotor turbine.
Figure 1-69. Multirotor turbine.

In multiple spool engines, each spool has its own set of turbine stages. Each set of turbine stages turns the compressor attached to it. Most turbofan engines have two spools: low pressure (fan shaft a few stages of compression and the turbine to drive it) and high pressure (high pressure compressor shaft and high pressure turbine). [Figure 1-70]

Figure 1-70. Dual-rotor turbine for split-spool compressor.
Figure 1-70. Dual-rotor turbine for split-spool compressor.

The remaining element to be discussed concerning turbine familiarization is the turbine casing or housing. The turbine casing encloses the turbine wheel and the nozzle vane assembly, and at the same time gives either direct or indirect support to the stator elements of the turbine section. It always has flanges provided front and rear for bolting the assembly to the combustion chamber housing and the exhaust cone assembly, respectively. A turbine casing is illustrated in Figure 1-71.

Figure 1-71. Turbine casing assembly.
Figure 1-71. Turbine casing assembly.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   
-->

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2023 Flight-Mechanic.com