• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
  • Tip Jar
You are here: Home / Basic Aviation Maintenance / Aircraft Cleaning and Corrosion Control / Corrosion Control – Part Six (Corrosion of Ferrous Metals)
Regretfully, Flight-Mechanic will be turning out the lights after fifteen years. Google, in its infinite wisdom, has chosen to remove Flight-Mechanic from its search results (the claim is that the content on this site is spam). We appealed their decision to shut us down, to no avail.

Unfortunately, since Google has a monopoly over internet search, this means that traffic levels on the site will drop to a level that makes maintaining it uneconomic. As time progresses, we will no longer be able to maintain the server space and will remove the site from the internet. Thanks to all who have supported us over the years.

To fight back against the monopolistic practices of companies like Google, we recommend using a competing search engine such as Brave (you get the added benefit of not being spied on by Big Tech) and advocating for anti-trust legislation from your representatives.

Corrosion Control – Part Six (Corrosion of Ferrous Metals)

Filed Under: Aircraft Cleaning and Corrosion Control

Corrosion of Ferrous Metals

One of the most familiar types of corrosion is ferrous oxide (rust), generally resulting from atmospheric oxidation of steel surfaces. Some metal oxides protect the underlying base metal, but rust is not a protective coating in any sense of the word. Its presence actually promotes additional attack by attracting moisture from the air and acting as a catalyst for additional corrosion. If complete control of the corrosive attack is to be realized, all rust must be removed from steel surfaces.

Rust first appears on bolt heads, hold-down nuts, or other unprotected aircraft hardware. [Figure 6-14] Its presence in these areas is generally not dangerous and has no immediate effect on the structural strength of any major components. The residue from the rust may also contaminate other ferrous components, promoting corrosion of those parts. The rust is indicative of a need for maintenance and of possible corrosive attack in more critical areas. It is also a factor in the general appearance of the equipment. When paint failures occur or mechanical damage exposes highly stressed steel surfaces to the atmosphere, even the smallest amount of rusting is potentially dangerous in these areas and must be removed and controlled.

Figure 6-14. Rust.
Figure 6-14. Rust.

Rust removal from structural components, followed by an inspection and damage assessment, must be done as soon as feasible. [Figure 6-15]

Figure 6-15. Rust on structural components.
Figure 6-15. Rust on structural components.

 

Mechanical Removal of Iron Rust

The most practicable means of controlling the corrosion of steel is the complete removal of corrosion products by mechanical means and restoring corrosion preventive coatings. Except on highly stressed steel surfaces, the use of abrasive papers and compounds, small power buffers and buffing compounds, hand wire brushing, or steel wool are all acceptable cleanup procedures. However, it should be recognized that in any such use of abrasives, residual rust usually remains in the bottom of small pits and other crevices. It is practically impossible to remove all corrosion products by abrasive or polishing methods alone. As a result, once a part cleaned in such a manner has rusted, it usually corrodes again more easily than it did the first time.

The introduction of variations of the nonwoven abrasive pad has also increased the options available for the removal of surface rust. [Figure 6-16] Flap wheels, pads intended for use with rotary or oscillating power tools, and hand-held nonwoven abrasive pads all can be used alone or with light oils to remove corrosion from ferrous components.

Figure 6-16. Nonwoven abrasive pads.
Figure 6-16. Nonwoven abrasive pads.
 

Chemical Removal of Rust

As environmental concerns have been addressed in recent years, interest in noncaustic chemical rust removal has increased. A variety of commercial products, which actively remove the iron oxide without chemically etching the base metal, are available and should be considered for use. Generally speaking, if at all possible, the steel part should be removed from the airframe for treatment, as it can be nearly impossible to remove all residues. The use of any caustic rust removal product will require the isolation of the part from any nonferrous metals during treatment, and will probably require inspection for proper dimensions.

Chemical Surface Treatment of Steel

There are approved methods for converting active rust to phosphates and other protective coatings. Other commercial preparations are effective rust converters where tolerances are not critical and where thorough rinsing and neutralizing of residual acid is possible. These situations are generally not applicable to assembled aircraft, and the use of chemical inhibitors on installed steel parts is not only undesirable but also very dangerous. The danger of entrapment of corrosive solutions and the resulting uncontrolled attack, which could occur when such materials are used under field conditions, outweigh any advantages to be gained from their use.

Removal of Corrosion from Highly Stressed Steel Parts

Any corrosion on the surface of a highly stressed steel part is potentially dangerous, and the careful removal of corrosion products is required. Surface scratches or change in surface structure from overheating can also cause sudden failure of these parts. Corrosion products must be removed by careful processing, using mild abrasive papers such as rouge or fine grit aluminum oxide, or fine buffing compounds on cloth buffing wheels. Nonwoven abrasive pads can also be used. It is essential that steel surfaces not be overheated during buffing. After careful removal of surface corrosion, reapply protective paint finishes immediately.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   
-->

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2023 Flight-Mechanic.com