• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
You are here: Home / Airframe / Aircraft Instrument Systems / Common Gyroscopic Instruments (Part Two)

Common Gyroscopic Instruments (Part Two)

Filed Under: Aircraft Instrument Systems

Gyroscopic Direction Indicator or Directional Gyro (DG)

The gyroscopic direction indicator or directional gyro (DG) is often the primary instrument for direction. Because a magnetic compass fluctuates so much, a gyro aligned with the magnetic compass gives a much more stable heading indication. Gyroscopic direction indicators are located at the center base of the instrument panel basic T.

A vacuum-powered DG is common on many light aircraft. Its basis for operation is the gyro’s rigidity in space. The gyro rotor spins in the vertical plane and stays aligned with the direction to which it is set. The aircraft and instrument case moves around the rigid gyro. This causes a vertical compass card that is geared to the rotor gimbal to move. It is calibrated in degrees, usually with every 30 degrees labeled. The nose of a small, fixed airplane on the instrument glass indicates the aircraft’s heading. [Figure 10-103]

Figure 10-103. A typical vacuum-powered gyroscopic direction indicator, also known as a directional gyro.
Figure 10-103. A typical vacuum-powered gyroscopic direction indicator, also known as a directional gyro.

Vacuum-driven direction indicators have many of the same basic gyroscopic instrument issues as attitude indicators. Built-in compensation for precession varies and a caging device is usually found. Periodic manual realignment with the magnetic compass by the pilot is required during flight.

 

Turn Coordinators

Many aircraft make use of a turn coordinator. The rotor of the gyro in a turn coordinator is canted upwards 30°. As such, it responds not only to movement about the vertical axis, but also to roll movements about the longitudinal axis. This is useful because it is necessary to roll an aircraft to turn it about the vertical axis. Instrument indication of roll, therefore, is the earliest possible warning of a departure from straight-and-level flight.

Typically, the face of the turn coordinator has a small airplane symbol. The wing tips of the airplane provide the indication of level flight and the rate at which the aircraft is turning. [Figure 10-104]

Figure 10-104. A turn coordinator senses and indicates the rate of both roll and yaw.
Figure 10-104. A turn coordinator senses and indicates the rate of both roll and yaw.

Turn-and-Slip Indicator

The turn-and-slip indicator may also be referred to as the turnand- bank indicator, or needle-and-ball indicator. Regardless, it shows the correct execution of a turn while banking the aircraft and indicates movement about the vertical axis of the aircraft (yaw). Most turn-and-slip indicators are located below the airspeed indicator of the instrument panel basic T, just to the left of the direction indicator.

The turn-and-slip indicator is actually two separate devices built into the same instrument housing: a turn indicator pointer and slip indicator ball. The turn pointer is operated by a gyro that can be driven by a vacuum, air pressure, or by electricity. The ball is a completely independent device. It is a round agate, or steel ball, in a glass tube filled with dampening fluid. It moves in response to gravity and centrifugal force experienced in a turn.

 

Turn indicators vary. They all indicate the rate at which the aircraft is turning. Three degrees of turn per second cause an aircraft to turn 360° in 2 minutes. This is considered a standard turn. This rate can be indicated with marks right and left of the pointer, which normally rests in the vertical position. Sometimes, no marks are present and the width of the pointer is used as the calibration device. In this case, one pointer width deflection from vertical is equal to the 3° per second standard 2-minute turn rate. Faster aircraft tend to turn more slowly and have graduations or labels that indicate 4-minute turns. In other words, a pointer’s width or alignment with a graduation mark on this instrument indicates that the aircraft is turning a 11⁄2° per second and completes a 360° turn in 4 minutes. It is customary to placard the instrument face with words indicating whether it is a 2-or 4-minute turn indicator. [Figure 10-105]

Figure 10-105. Turn-and-slip indicator.
Figure 10-105. Turn-and-slip indicator.

The turn pointer indicates the rate at which an aircraft is turning about its vertical axis. It does so by using the precession of a gyro to tilt a pointer. The gyro spins in a vertical plane aligned with the longitudinal axis of the aircraft. When the aircraft rotates about its vertical axis during a turn, the force experienced by the spinning gyro is exerted about the vertical axis. Due to precession, the reaction of the gyro rotor is 90° further around the gyro in the direction of spin. This means the reaction to the force around the vertical axis is movement around the longitudinal axis of the aircraft. This causes the top of the rotor to tilt to the left or right. The pointer is attached with linkage that makes the pointer deflect in the opposite direction, which matches the direction of turn. So, the aircraft’s turn around the vertical axis is indicated around the longitudinal axis on the gauge. This is intuitive to the pilot when regarding the instrument, since the pointer indicates in the same direction as the turn. [Figure 10-106]

Figure 10-106. The turn-and-slip indicator’s gyro reaction to the turning force in a right hand turn. The yaw force results in a force on the gyro 90° around the rotor in the direction it is turning due to precession. This causes the top of the rotor to tilt to the left. Through connecting linkage, the pointer tilts to the right.
Figure 10-106. The turn-and-slip indicator’s gyro reaction to the turning force in a right hand turn. The yaw force results in a force on the gyro 90° around the rotor in the direction it is turning due to precession. This causes the top of the rotor to tilt to the left. Through connecting linkage, the pointer tilts to the right. [click image to enlarge]
The slip indicator (ball) part of the instrument is an inclinometer. The ball responds only to gravity during coordinated straight-and-level flight. Thus, it rests in the lowest part of the curved glass between the reference wires. When a turn is initiated and the aircraft is banked, both gravity and the centrifugal force of the turn act upon the ball. If the turn is coordinated, the ball remains in place. Should a skidding turn exist, the centrifugal force exceeds the force of gravity on the ball and it moves in the direction of the outside of the turn. During a slipping turn, there is more bank than needed, and gravity is greater than the centrifugal force acting on the ball. The ball moves in the curved glass toward the inside of the turn.

As mentioned previously, often power for the turn-andslip indicator gyro is electrical if the attitude and direction indicators are vacuum powered. This allows limited operation off battery power should the vacuum system and the electric generator fail. The directional and attitude information from the turn-and-slip indicator, combined with information from the pitot static instruments, allow continued safe emergency operation of the aircraft.

Electrically powered turn-and-slip indicators are usually DC powered. Vacuum-powered turn-and-slip indicators are usually run on less vacuum (approximately 2 “Hg) than fully gimbaled attitude and direction indicators. Regardless, proper vacuum must be maintained for accurate turn rate information to be displayed.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2021 Flight-Mechanic.com