• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
You are here: Home / Basic Aviation Maintenance / Fundamentals of Electricity and Electronics / Circuit Protection Devices (Part One)

Circuit Protection Devices (Part One)

Filed Under: Fundamentals of Electricity and Electronics

Perhaps the most serious trouble in a circuit is a direct short. The term “direct short” describes a situation in which some point in the circuit, where full system voltage is present, comes in direct contact with the ground or return side of the circuit. This establishes a path for current flow that contains no resistance other than that present in the wires carrying the current, and these wires have very little resistance.

Most wires used in aircraft electrical circuits are small gauge, and their current carrying capacity is quite limited. The size of the wires used in any given circuit is determined by the amount of current the wires are expected to carry under normal operating conditions. Any current flow in excess of normal, such as the case of a direct short, would cause a rapid generation of heat. If the excessive current flow caused by the short is left unchecked, the heat in the wire could cause a portion of the wire to melt and at the very least, open the circuit.

To protect aircraft electrical systems from damage and failure caused by excessive current, several kinds of protective devices are installed in the systems. Fuses, circuit breakers, thermal protectors, and arc fault circuit breakers are used for this purpose.

Circuit protective devices, as the name implies, all have a common purpose—to protect the units and the wires in the circuit. Some are designed primarily to protect the wiring and to open the circuit in such a way as to stop the current flow when the current becomes greater than the wires can safely carry. Other devices are designed to protect a unit in the circuit by stopping the current flow to it when the unit becomes excessively warm.

Fuse

Fuses are used to protect the circuit from over current conditions. [Figure 12-67] The fuse is installed in the circuit so that all the current in the circuit passes through it. In most fuses, the strip of metal is made of an alloy of tin and bismuth, which melts and opens the circuit when the current exceeds the rated capacity of the fuse. For example, if a 5-amp fuse is placed into a circuit, the fuse allows currents up to 5 amps to pass. Because the fuse is intended to protect the circuit, it is quite important that its capacity match the needs of the circuit in which it is used.

Figure 12-67. Schematic symbol for fuse.
Figure 12-67. Schematic symbol for fuse.

When replacing a fuse, consult the applicable manufacturer’s instructions to be sure a fuse of the correct type and capacity is installed. Fuses are installed in two types of fuse holders in aircraft. “Plug-in holders” or in-line holders are used for small and low capacity fuses. “Clip” type holders are used for heavy high capacity fuses and current limiters.

Current Limiter

The current limiter is very much like the fuse. However, the current limiter link is usually made of copper and will stand a considerable overload for a short period of time. Like the fuse, it opens up in an over current condition in heavy current circuits such as 30 amp or greater. These are used primarily to sectionalize an aircraft circuit or bus. Once the limiter is opened, it must be replaced. The schematic symbol for the current limiter is the same as that for the fuse.

Circuit Breaker

The circuit breaker is commonly used in place of a fuse and is designed to break the circuit and stop the current flow when the current exceeds a predetermined value. Unlike the fuse, the circuit breaker can be reset; whereas the fuse or current limiter must be replaced. [Figure 12-68]

Figure 12-68. Schematic symbol for circuit breaker.
Figure 12-68. Schematic symbol for circuit breaker.

There are several types of circuit breakers in general use in aircraft systems. One is a magnetic type. When excessive current flows in the circuit, it makes an electromagnet strong enough to move a small armature, which trips the breaker.

Another type is the thermal overload switch or breaker. This consists of a bimetallic strip which, when it becomes overheated from excessive current, bends away from a catch on the switch lever and permits the switch to trip open.

Most circuit breakers must be reset by hand. If the overload condition still exists, the circuit breaker trips again to prevent damage to the circuit. At this point, it is usually not advisable to continue resetting the circuit breaker, but to initiate troubleshooting to determine the cause. Repeated resetting of a circuit breaker can lead to circuit or component damage or worse, the possibility of a fire or explosion. Automatic reset type circuit breakers are not allowed in aircraft. Circuit breakers are commonly grouped on a circuit breaker panel that is accessible to the flight crew. Figure 12-69 shows a circuit breaker and a circuit breaker panel.

Figure 12-69. Circuit breaker assembly for aircraft electrical system.
Figure 12-69. Circuit breaker assembly for aircraft electrical system.

Arc Fault Circuit Breaker

In recent years, the arc fault circuit breaker has begun to provide an additional layer of protection beyond that of the thermal protection already provided by conventional circuit breakers. The arc fault circuit breaker monitors the circuit for an electrical arcing signature, which can indicate possible wiring faults and unsafe conditions. These conditions can lead to fires or loss of power to critical systems. The arc fault circuit breaker is only beginning to make an appearance in the aircraft industry and is not widely used like the thermal type of circuit breaker.

Thermal Protectors

A thermal protector, or switch, is used to protect a motor. It is designed to open the circuit automatically whenever the temperature of the motor becomes excessively high. It has two positions—open and closed. The most common use for a thermal switch is to keep a motor from overheating. If a malfunction in the motor causes it to overheat, the thermal switch breaks the circuit intermittently.

The thermal switch contains a bimetallic disk, or strip, that bends and breaks the circuit when it is heated. This occurs because one of the metals expands more than the other when they are subjected to the same temperature. When the strip or disk cools, the metals contract and the strip returns to its original position and closes the circuit.

Control Devices

Components in the electrical circuits are typically not all intended to operate continuously or automatically. Most of them are meant to operate at certain times, under certain conditions, to perform very definite functions. There must be some means of controlling their operation. Either a switch, or a relay, or both may be included in the circuit for this purpose.

Switches

Switches control the current flow in most aircraft electrical circuits. A switch is used to start, to stop, or to change the direction of the current flow in the circuit. The switch in each circuit must be able to carry the normal current of the circuit and must be insulated heavily enough for the voltage of the circuit. Figure 12-70 shows various switches used in aircraft electrical systems.

Figure 12-70. Various types of switches used in modern aircraft.
Figure 12-70. Various types of switches used in modern aircraft.

An understanding of some basic definitions of the switch is necessary before any of the switch types are discussed. The number of poles, throws, and positions they have designates toggle switches, as well as some other type of switches.

Pole—the switch’s movable blade or contactor. The number of poles is equal to the number of circuits, or paths for current flow, that can be completed through the switch at any one time.

Throw—indicates the number of circuits, or paths for current, that it is possible to complete through the switch with each pole or contactor.

Positions—indicates the number of places at which the operating device (toggle, plunger, and so forth) comes to rest and at the same time open or close one or more circuits.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2021 Flight-Mechanic.com