• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Flight Mechanic

Aircraft Mechanic School Study Supplement for Future Aviation Maintenance Technicians




  • Home
  • AMT Training
    • Basic Aviation Maintenance
    • Airframes
    • Powerplants
  • AMT Schools
  • AMT Books
  • Tip Jar
You are here: Home / Airframe / Aircraft Wood and Structural Repair / Aircraft Wood and Structural Repair

Aircraft Wood and Structural Repair

Filed Under: Aircraft Wood and Structural Repair

Wood was among the first materials used to construct aircraft. Most of the airplanes built during World War I (WWI) were constructed of wood frames with fabric coverings. Wood was the material of choice for aircraft construction into the 1930s. Part of the reason was the slow development of strong, lightweight, metal aircraft structures and the lack of suitable corrosion-resistant materials for all-metal aircraft.

In the late 1930s, the British airplane company DeHavilland designed and developed a bomber named the Mosquito. Well into the late 1940s, DeHavilland produced more than 7,700 airplanes made of spruce, birch plywood, and balsa wood. [Figure 6-1]

Figure 6-1. British DeHavilland Mosquito bomber.
Figure 6-1. British DeHavilland Mosquito bomber.

During the early part of WWII, the U.S. government put out a contract to build three flying boats. Hughes Aircraft ultimately won the contract with the mandate to use only materials not critical to the war, such as aluminum and steel. Hughes designed the aircraft to be constructed out of wood.

After many delays and loss of government funding, Howard Hughes continued construction, using his own money and completing one aircraft. On November 2, 1947, during taxi tests in the harbor at Long Beach, California, Hughes piloted the Spruce Goose for over a mile at an altitude of 70 feet, proving it could fly.

This was the largest seaplane and the largest wooden aircraft ever constructed. Its empty weight was 300,000 pounds with a maximum takeoff weight of 400,000 pounds. The entire airframe, surface structures, and flaps were composed of laminated wood with fabric covered primary control surfaces. It was powered by eight Pratt & Whitney R-4360 radial engines, each producing 3,000 horsepower. [Figure 6-2]

Figure 6-2. Hughes Flying Boat, H-4 Hercules named the Spruce Goose.
Figure 6-2. Hughes Flying Boat, H-4 Hercules named the Spruce Goose.

As the aircraft design and manufacturing evolved, the development of lightweight metals and the demand for increased production moved the industry away from aircraft constructed entirely of wood. Some general aviation aircraft were produced with wood spars and wings, but today only a limited number of wood aircraft are produced. Most of those are built by their owners for education or recreation and not for production.

Quite a number of airplanes in which wood was used as the primary structural material still exist and are operating, including certificated aircraft that were constructed during the 1930s and later. With the proper maintenance and repair procedures, these older aircraft can be maintained in an airworthy condition and kept operational for many years.

Flight Mechanic Recommends

Rod Machado's Private Pilot Handbook -Flight Literacy recommends Rod Machado's products because he takes what is normally dry and tedious and transforms it with his characteristic humor, helping to keep you engaged and to retain the information longer. (see all of Rod Machado's Products).
   
-->

Primary Sidebar

SEARCH FLIGHT MECHANIC

SEARCH FLIGHT MECHANIC

Aircraft Mechanic Training

Basic Aviation Maintenance

Powerplants

Airframes

Popular Posts

Aircraft Mechanic Salary

Aircraft Mechanic Schools

Aircraft Mechanic Requirements

Aircraft Flight Training

Contact Us | Terms of Use | Privacy Policy
Easy Campfire Recipes | Recipe Workbook



Copyright © 2022 Flight-Mechanic.com