Wiring Installation and Routing (Part Four)

in Aircraft Electrical System

Grounding

Grounding is the process of electrically connecting conductive objects to either a conductive structure or some other conductive return path for the purpose of safely completing either a normal or fault circuit. [Figure 9-144] If wires carrying return currents from different types of sources, such as signals of DC and AC generators, are connected to the same ground point or have a common connection in the return paths, an interaction of the currents occurs. Mixing return currents from various sources should be avoided because noise is coupled from one source to another and can be a major problem for digital systems. To minimize the interaction between various return currents, different types of ground should be identified and used. As a minimum, the design should use three ground types: (1) AC returns, (2) DC returns, and (3) all others.


Figure 9-144. Ground wires.

Figure 9-144. Ground wires.

For distributed power systems, the power return point for an alternative power source would be separated. For example, in a two-AC generator (one on the right side and the other on the left side) system, if the right AC generator were supplying backup power to equipment located in the left side, (left equipment rack) the backup AC ground return should be labeled “AC Right.” The return currents for the left generator should be connected to a ground point labeled “AC Left.”

The design of the ground return circuit should be given as much attention as the other leads of a circuit. A requirement for proper ground connections is that they maintain an impedance that is essentially constant. Ground return circuits should have a current rating and voltage drop adequate for satisfactory operation of the connected electrical and electronic equipment. EMI problems that can be caused by a system’s power wire can be reduced substantially by locating the associated ground return near the origin of the power wiring (e.g., circuit breaker panel) and routing the power wire and its ground return in a twisted pair. Special care should be exercised to ensure replacement on ground return leads. The use of numbered insulated wire leads instead of bare grounding jumpers may aid in this respect. In general, equipment items should have an external ground connection, even when internally grounded. Direct connections to a magnesium structure must not be used for ground return because they may create a fire hazard.

Power ground connections for generators, transformer rectifiers, batteries, external power receptacles, and other heavy-current loads must be attached to individual grounding brackets that are attached to aircraft structure with a proper metal-to-metal bonding attachment. This attachment and the surrounding structure must provide adequate conductivity to accommodate normal and fault currents of the system without creating excessive voltage drop or damage to the structure. At least three fasteners, located in a triangular or rectangular pattern, must be used to secure such brackets in order to minimize susceptibility to loosening under vibration. If the structure is fabricated of a material, such as carbon fiber composite (CFC), that has a higher resistivity than aluminum or copper, it is necessary to provide an alternative ground path(s) for power return current. Special attention should be considered for composite aircraft.

Power return or fault current ground connections within flammable vapor areas must be avoided. If they must be made, make sure these connections do not arc, spark, or overheat under all possible current flow or mechanical failure conditions, including induced lightning currents. Criteria for inspection and maintenance to ensure continued airworthiness throughout the expected life of the aircraft should be established. Power return fault currents are normally the highest currents flowing in a structure. These can be the full generator current capacity. If full generator fault current flows through a localized region of the carbon fiber structure, major heating and failure can occur. CFC and other similar low-resistive materials must not be used in power return paths. Additional voltage drops in the return path can cause voltage regulation problems. Likewise, repeated localized material heating by current surges can cause material degradation. Both problems may occur without warning and cause no repeatable failures or anomalies.

The use of common ground connections for more than one circuit or function should be avoided except where it can be shown that related malfunctions that could affect more than one circuit do not result in a hazardous condition. Even when the loss of multiple systems does not, in itself, create a hazard, the effect of such failure can be quite distracting to the crew.

Bonding

Bonding is the electrical connecting of two or more conducting objects not otherwise adequately connected.

The following bonding requirements must be considered:

  • Equipment bonding—low-impedance paths to aircraft structure are normally required for electronic equipment to provide radio frequency return circuits and for most electrical equipment to facilitate reduction in EMI. The cases of components that produce electromagnetic energy should be grounded to structure. To ensure proper operation of electronic equipment, it is particularly important to conform the system’s installation specification when interconnections, bonding, and grounding are being accomplished.
  • Metallic surface bonding—all conducting objects on the exterior of the airframe must be electrically connected to the airframe through mechanical joints, conductive hinges, or bond straps capable of conducting static charges and lightning strikes. Exceptions may be necessary for some objects, such as antenna elements, whose function requires them to be electrically isolated from the airframe. Such items should be provided with an alternative means to conduct static charges and/or lightning currents, as appropriate.
  • Static bonds—all isolated conducting parts inside and outside the aircraft, having an area greater than 3 square inches and a linear dimension over 3 inches, that are subjected to appreciable electrostatic charging due to precipitation, fluid, or air in motion, should have a mechanically secure electrical connection to the aircraft structure of sufficient conductivity to dissipate possible static charges. A resistance of less than 1 ohm when clean and dry generally ensures such dissipation on larger objects. Higher resistances are permissible in connecting smaller objects to airframe structure.

Testing of Bonds and Grounds

The resistance of all bond and ground connections should be tested after connections are made before re-finishing. The resistance of each connection should normally not exceed 0.003 ohm. A high quality test instrument, an AN/USM-21A or equivalent, is required to accurately measure the very low resistance values.

Figure 9-145. Bonding jumpers.

Figure 9-145. Bonding jumpers.

Bonding Jumper Installation

Bonding jumpers should be made as short as practicable, and installed in such a manner that the resistance of each connection does not exceed .003 ohm. The jumper should not interfere with the operation of movable aircraft elements, such as surface controls, nor should normal movement of these elements result in damage to the bonding jumper. [Figure 9-145]

  • Bonding connections—to ensure a low-resistance connection, nonconducting finishes, such as paint and anodizing films, should be removed from the attachment surface to be contacted by the bonding terminal. Electrical wiring should not be grounded directly to magnesium parts.
  • Corrosion protection—one of the more frequent causes of failures in electrical system bonding and grounding is corrosion. The areas around completed connections should be post-finished quickly with a suitable finish coating.
  • Corrosion prevention—electrolytic action may rapidly corrode a bonding connection if suitable precautions are not taken. Aluminum alloy jumpers are recommended for most cases; however, copper jumpers should be used to bond together parts made of stainless steel, cadmium plated steel, copper, brass, or bronze. Where contact between dissimilar metals cannot be avoided, the choice of jumper and hardware should be such that corrosion is minimized; the part likely to corrode should be the jumper or associated hardware.
  • Bonding jumper attachment—the use of solder to attach bonding jumpers should be avoided. Tubular members should be bonded by means of clamps to which the jumper is attached. Proper choice of clamp material should minimize the probability of corrosion.
  • Ground return connection—when bonding jumpers carry substantial ground return current, the current rating of the jumper should be determined to be adequate, and a negligible voltage drop is produced. [Figure 9-146]
Figure 9-146. Bolt and nut bonding or grounding to flat surface.

Figure 9-146. Bolt and nut bonding or grounding to flat surface. [click image to enlarge]