Turbosuperchargers

in Induction and Exhaust Systems

Externally driven superchargers (turbosuperchargers) are designed to deliver compressed air to the inlet of the carburetor or fuel/air control unit of an engine. Externally driven superchargers derive their power from the energy of engine exhaust gases directed against a turbine that drives an impeller that compresses the incoming air. For this reason, they are commonly called turbosuperchargers or turbochargers. To be a true supercharger, it must boost the manifold pressure above 30 “Hg.

The typical turbosupercharger, shown in Figure 3-12, is composed of three main parts:


  1. Compressor assembly
  2. Turbine wheel assembly
  3. A full floating shaft bearing assembly
Figure 3-12. A typical turbosupercharger and its main parts.

Figure 3-12. A typical turbosupercharger and its main parts.

Detail examples of a turbosupercharger are shown in Figure 3-13. In addition to the major assemblies, there is a baffle between the compressor casing and the exhaust-gas turbine that directs cooling air to the pump and bearing casing, and also shields the compressor from the heat radiated by the turbine. In installations where cooling air is limited, the baffle is replaced by a regular cooling shroud that receives its air directly from the induction system.

Figure 3-13. Detail examples of the main components of a turbosupercharger.

Figure 3-13. Detail examples of the main components of a turbosupercharger.

The compressor assembly is made up of an impeller, a diffuser, and a casing. The air for the induction system enters through a circular opening in the center of the compressor casing, where it is picked up by the blades of the impeller, which gives it high velocity as it travels outward toward the diffuser. The diffuser vanes direct the airflow as it leaves the impeller and also converts the high velocity of the air to high-pressure.

Figure 3-14. Exhaust gas turbine assembly.

Figure 3-14. Exhaust gas turbine assembly.

Motive power for the impeller is furnished through the impeller’s attachment to the turbine wheel shaft of the exhaust-gas turbine. This complete assembly is referred to as the rotor. (The rotor revolves on the oil feed bearings.) The exhaust gas turbine assembly consists of the turbocharger and waste gate valve. [Figure 3-14] The turbine wheel, driven by exhaust gases, drives the impeller. The turbo housing collects and directs the exhaust gases onto the turbine wheel, and the waste gate regulates the amount of exhaust gases directed to the turbine. The waste gate controls the volume of the exhaust gas that is directed onto the turbine and thereby regulates the speed of the rotor (turbine and impeller). [Figure 3-15]

Figure 3-15. Waste gate control of exhaust.

Figure 3-15. Waste gate control of exhaust.

If the waste gate is completely closed, all the exhaust gases are “backed up” and forced through the turbine wheel. If the waste gate is partially closed, a corresponding amount of exhaust gas is directed to the turbine. The exhaust gasses, thus directed, strike the turbine blades, arranged radially around the outer edge of the turbine, and cause the rotor (turbine and impeller) to rotate. The gases, having exhausted most of their energy, are then exhausted overboard. When the waste gate is fully open, nearly all of the exhaust gases pass overboard providing little or no boost.