Turbofan Engines

in Aircraft Engines

The turbofan gas turbine engine is, in principle, the same as a turboprop, except that the propeller is replaced by a ductenclosed axial-flow fan. [Figure 1-79] The fan can be a part of the first-stage compressor blades or can be mounted as a separate set of fan blades. The blades can be mounted forward of the compressor.

Figure 1-79. Turbofan engine.

Figure 1-79. Turbofan engine.

The general principle of the fan engine is to convert more of the fuel energy into pressure. With more of the energy converted to pressure, a greater product of pressure times area can be achieved. One of the major advantages is turbofan production of this additional thrust without increasing fuel flow. The end result is fuel economy with the consequent increase in range. Because more of the fuel energy is turned into pressure in the turbofan engine, additional stages must be added in the turbine section to provide the power to drive the fan. This means there is less energy left over and less thrust from the core exhaust gases. Also, in a mixed-exhaust nozzle (where fan air and core air mix in a common nozzle before entering ambient conditions) the exhaust nozzle must be larger in area. The result is that the fan develops most of the thrust. The thrust produced by the fan more than makes up for the decrease in thrust of the core (gas generator) of the engine. Depending on the fan design and bypass ratio, it produces 80 percent of the turbofan engine’s total thrust.

Two different exhaust nozzle designs are used with turbofan engines. The air leaving the fan can be ducted overboard by a separate fan nozzle [Figure 1-43], or it can be ducted along the outer case of the basic engine to be discharged through the mixed nozzle (core and fan exhaust together). The fan air is either mixed with the exhaust gases before it is discharged (mixed or common nozzle), or it passes directly to the atmosphere without prior mixing (separate nozzle). Turbofans are the most widely used gas turbine engine for air transport aircraft. The turbofan is a compromise between the good operating efficiency and high thrust capability of a turboprop and the high speed, high altitude capability of a turbojet.

Figure 1-43. Turbofan engine with separate nozzles fan and core.

Figure 1-43. Turbofan engine with separate nozzles fan and core.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: