Turbine Lubrication System Components – Oil Coolers

in Lubrication and Cooling Systems

Air Oil Coolers

Two basic types of oil coolers in general use are the air-cooled and the fuel-cooled. Air oil coolers are used in the lubricating systems of some turbine engines to reduce the temperature of the oil to a degree suitable for recirculation through the system. The air-cooled oil cooler is normally installed at the forward end of the engine. It is similar in construction and operation to the air-cooled cooler used on reciprocating engines. An air oil cooler is usually included in a dry-sump oil system. [Figure 6-42] This cooler may be air-cooled or fuel-cooled and many engines use both. Dry-sump lubrication systems require coolers for several reasons. First, air cooling of bearings by using compressor bleed-air is not sufficient to cool the turbine bearing cavities because of the heat present in area of the turbine bearings. Second, the large turbofan engines normally require a greater number of bearings, which means that more heat is transferred to the oil. Consequently, the oil coolers are the only means of dissipating the oil heat.


Figure 6-42. Air oil cooler.

Figure 6-42. Air oil cooler.

Fuel Oil Coolers

The fuel-cooled oil cooler acts as a fuel oil heat exchanger in that the fuel cools the hot oil and the oil heats the fuel for combustion. [Figure 6-43] Fuel flowing to the engine must pass through the heat exchanger; however, there is a thermostatic valve that controls the oil flow, and the oil may bypass the cooler if no cooling is needed. The fuel/oil heat exchanger consists of a series of joined tubes with an inlet and outlet port. The oil enters the inlet port, moves around the fuel tubes, and goes out the oil outlet port.

Figure 6-43. Fuel oil heat exchanger cooler.

Figure 6-43. Fuel oil heat exchanger cooler.

Deoiler

The deoiler removes the oil from the breather air. The breather air goes into an impeller that turns in the deoiler housing. Centrifugal force drives the oil towards the outer wall of the impeller. Then, the oil drains from the deoiler into a sump or oil tank. Because the air is much lighter than the oil, it goes through the center of the impeller and is vented overboard.

Figure 6-44. Chip detector.

Figure 6-44. Chip detector.

Magnetic Chip Detectors

Magnetic chip detectors are used in the oil system to detect and catch ferrous (magnetic) particles present in the oil. [Figure 6-44] Scavenge oil generally flows past chip detectors so any magnetic particles are attracted and stick to the chip detector. Chip detectors are placed in several locations but generally are in the scavenge lines for each scavenge pump, oil tank, and in the oil sumps. Some engines have several detectors to one detector. During maintenance, the chip detectors are removed from the engine and inspected for metal; if none is found, the detector is cleaned, replaced, and safety wired. If metal is found on a chip detector, an investigation should be made to find the source of the metal on the chip.