The A-B-C classification of titanium alloys was established to provide a convenient and simple means of describing all titanium alloys. Titanium and titanium alloys possess three basic types of crystals: A (alpha), B (beta), and C (combined alpha and beta). Their characteristics are:

  • A (alpha) — all around performance; good weldability; tough and strong both cold and hot, and resistant to oxidation.
  • B (beta)—bendability; excellent bend ductility; strong both cold and hot, but vulnerable to contamination.
  • C (combined alpha and beta for compromise performances) — strong when cold and warm, but weak when hot; good bendability; moderate contamination resistance; excellent forgeability.

Titanium is manufactured for commercial use in two basic compositions: commercially pure titanium and alloyed titanium. A-55 is an example of a commercially pure titanium. It has a yield strength of 55,000 to 80,000 psi and is a general purpose grade for moderate to severe forming. It is sometimes used for nonstructural aircraft parts and for all types of corrosion resistant applications, such as tubing. Type A-70 titanium is closely related to type A-55 but has a yield strength of 70,000 to 95,000 psi. It is used where higher strength is required, and it is specified for many moderately stressed aircraft parts. For many corrosion applications, it is used interchangeably with type A-55. Both type A-55 and type A-70 are weldable.

One of the widely used titanium base alloys is designated as C-110M. It is used for primary structural members and aircraft skin, has 110,000 psi minimum yield strength, and contains 8 percent manganese.

Type A-110AT is a titanium alloy which contains 5 percent aluminum and 2.5 percent tin. It also has a high minimum yield strength at elevated temperatures with the excellent welding characteristics inherent in alpha-type titanium alloys.