Titanium and Titanium Alloys

in Aircraft Materials Processes and Hardware

Titanium was discovered by an English priest named Gregot. A crude separation of titanium ore was accomplished
in 1825. In 1906 a sufficient amount of pure titanium was isolated in metallic form to permit a study. Following this study, in 1932, an extraction process was developed which became the first commercial method for producing titanium. The United States Bureau of Mines began making titanium sponge in 1946, and 4 years later the melting process began.

The use of titanium is widespread. It is used in many commercial enterprises and is in constant demand for such items as pumps, screens, and other tools and fixtures where corrosion attack is prevalent. In aircraft construction and repair, titanium is used for fuselage skins, engine shrouds, firewalls, longerons, frames, fittings, air ducts, and fasteners.

Titanium is used for making compressor disks, spacer rings, compressor blades and vanes, through bolts, turbine
housings and liners, and miscellaneous hardware for turbine engines.

Titanium, in appearance, is similar to stainless steel. One quick method used to identify titanium is the spark test. Titanium gives off a brilliant white trace ending in a brilliant white burst. Also, identification can be accomplished by moistening the titanium and using it to draw a line on a piece of glass. This will leave a dark line similar in appearance to a pencil mark.

Titanium falls between aluminum and stainless steel in terms of elasticity, density, and elevated temperature strength. It has a melting point of from 2,730 °F to 3,155 °F, low thermal conductivity, and a low coefficient of expansion. It is light, strong, and resistant to stress corrosion cracking. Titanium is approximately 60 percent heavier than aluminum and about 50 percent lighter than stainless steel.

Because of the high melting point of titanium, high temperature properties are disappointing. The ultimate yield strength of titanium drops rapidly above 800 °F. The absorption of oxygen and nitrogen from the air at temperatures above 1,000 °F makes the metal so brittle on long exposure that it soon becomes worthless. However, titanium does have some merit for short time exposure up to 3,000 °F where strength is not important. Aircraft firewalls demand this requirement.

Titanium is nonmagnetic and has an electrical resistance comparable to that of stainless steel. Some of the base alloys of titanium are quite hard. Heat treating and alloying do not develop the hardness of titanium to the high levels of some of the heat-treated alloys of steel. It was only recently that a heat-treatable titanium alloy was developed. Prior to the development of this alloy, heating and rolling was the only method of forming that could be accomplished. However, it is possible to form the new alloy in the soft condition and heat treat it for hardness.

Iron, molybdenum, and chromium are used to stabilize titanium and produce alloys that will quench harden and age harden. The addition of these metals also adds ductility. The fatigue resistance of titanium is greater than that of aluminum or steel.

Titanium becomes softer as the degree of purity is increased. It is not practical to distinguish between the various grades of commercially pure or unalloyed titanium by chemical analysis; therefore, the grades are determined by mechanical properties.