The FADEC System – Booster Coil

in Engine Ignition and Electrical Systems

The booster coil assembly, used mainly with older radial engine ignition systems, consists of two coils wound on a soft iron core, a set of contact points, and a condenser. [Figure 4-25] The booster coil is separate from the magneto and can generate a series of sparks on its own. During the start cycle, these sparks are routed to the trailing finger on the distributor rotor and then to the appropriate cylinder ignition lead. The primary winding has one end grounded at the internal grounding strip and its other end connected to the moving contact point. The stationary contact is fitted with a terminal to which battery voltage is applied when the magneto switch is placed in the start position, or automatically applied when the starter is engaged. The secondary winding, which contains several times as many turns as the primary coil, has one end grounded at the internal grounding strip and the other terminated at a high-tension terminal. The high-tension terminal is connected to an electrode in the distributor by an ignition cable.

Figure 4-25. Booster coil.

Figure 4-25. Booster coil.

Since the regular distributor terminal is grounded through the primary or secondary coil of a high-tension magneto, the high-voltage furnished by the booster coil must be distributed by a separate circuit in the distributor rotor. This is accomplished by using two electrodes in one distributor rotor. The main electrode, or finger, carries the magneto output voltage; the auxiliary electrode or trailing finger, distributes only the output of the booster coil. The auxiliary electrode is always located so that it trails the main electrode, thus retarding the spark during the starting period.

Figure 4-26 illustrates, in schematic form, the booster coil components shown in Figure 4-25. In operation, battery voltage is applied to the positive (+) terminal of the booster coil through the start switch. This causes current to flow through the closed contact points to the primary coil and ground. [Figure 4-26] Current flow through the primary coil sets up a magnetic field about the coil that magnetizes the coil core. As the core is magnetized, it attracts the movable contact point, which is normally held against the stationary contact point by a spring.

Figure 4-26. Booster coil schematic.

Figure 4-26. Booster coil schematic.

As the movable contact point is pulled toward the iron core, the primary circuit is broken, collapsing the magnetic field that extended about the coil core. Since the coil core acts as an electromagnet only when current flows in the primary coil, it loses its magnetism as soon as the primary coil circuit is broken. This permits the action of the spring to close the contact points and again complete the primary coil circuit. This remagnetizes the coil core, and again attracts the movable contact point, which again opens the primary coil circuit. This action causes the movable contact point to vibrate rapidly, as long as the start switch is held in the closed, or on, position. The result of this action is a continuously expanding and collapsing magnetic field that links the secondary coil of the booster coil. With several times as many turns in the secondary as in the primary, the induced voltage that results from lines of force linking the secondary is high enough to furnish ignition for the engine.

The condenser, which is connected across the contact points, has an important function in this circuit. [Figure 4-26] As current flow in the primary coil is interrupted by the opening of the contact points, the high self-induced voltage that accompanies each collapse of the primary magnetic field surges into the condenser. Without a condenser, an arc would jump across the points with each collapse of the magnetic field. This would burn and pit the contact points and greatly reduce the voltage output of the booster coil. The booster coil generates a pulsating DC in the primary winding that induces a high-voltage spark in the secondary windings of the booster coil.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: