Structural Fasteners – Special Purpose Fasteners – Pin Fastening Systems (High-Shear Fasteners)

in Aircraft Metal Structural Repair

Pin Fastening Systems (High-Shear Fasteners)

A pin fastening system, or high-shear pin rivet, is a two-piece fastener that consists of a threaded pin and a collar. The metal collar is swaged onto the grooved end, effecting a firm tight fit. They are essentially threadless bolts.

High-shear rivets are installed with standard bucking bars and pneumatic riveting hammers. They require the use of a special gun set that incorporates collar swaging and trimming and a discharge port through which excess collar material is discharged. A separate size set is required for each shank diameter.

Installation of High-Shear Fasteners

Prepare holes for pin rivets with the same care as for other close tolerance rivets or bolts. At times, it may be necessary to spot-face the area under the head of the pin to ensure the head of the rivet fits tightly against the material. The spotfaced area should be 1⁄16-inch larger in diameter than the head diameter. Pin rivets may be driven from either end. Procedures for driving a pin rivet from the collar end are:

  1. Insert the rivet in the hole.
  2. Place a bucking bar against the rivet head.
  3. Slip the collar over the protruding rivet end.
  4. Place previously selected rivet set and gun over the collar. Align the gun until it is perpendicular to the material.
  5. Depress the trigger on the gun, applying pressure to the rivet collar. This action causes the rivet collar to swage into the groove on the rivet end. 6. Continue the driving action until the collar is properly formed and excess collar material is trimmed off.

Procedures for driving a pin rivet from the head end are:

  1. Insert the rivet in the hole.
  2. Slip the collar over the protruding end of rivet.
  3. Insert the correct size gun rivet set in a bucking bar and place the set against the collar of the rivet.
  4. Apply pressure against the rivet head with a flush rivet set and pneumatic riveting hammer.
  5. Continue applying pressure until the collar is formed in the groove and excess collar material is trimmed off.


Pin rivets should be inspected on both sides of the material. The head of the rivet should not be marred and should fit tightly against the material.

Removal of Pin Rivets

The conventional method of removing rivets by drilling off the head may be utilized on either end of the pin rivet. Center punching is recommended prior to applying drilling pressure. In some cases, alternate methods may be needed:

  • Grind a chisel edge on a small pin punch to a blade width of 1⁄8-inch. Place this tool at right angles to the collar and drive with a hammer to split the collar down one side. Repeat the operation on the opposite side. Then, with the chisel blade, pry the collar from the rivet. Tap the rivet out of the hole.
  • Use a special hollow punch having one or more blades placed to split the collar. Pry the collar from the groove and tap out the rivet.
  • Sharpen the cutting blades of a pair of nippers. Cut the collar in two pieces or use nippers at right angles to the rivet and cut through the small neck.
  • A hollow-mill collar cutter can be used in a power hand drill to cut away enough collar material to permit the rivet to be tapped out of the work.

The high-shear pin rivet family includes fasteners, such as the Hi-Lok®, Hi-Tigue®, and Hi-Lite® made by Hi-Shear Corporation and the CherryBUCK® 95 KSI One-Piece Shear Pin and Cherry E-Z Buck® Shear Pin made by Cherry® Aerospace.

Hi-Lok® Fastening System

The threaded end of the Hi-Lok® two-piece fastener contains a hexagonal shaped recess. [Figure 4-105] The hex tip of an Allen wrench engages the recess to prevent rotation of the pin while the collar is being installed. The pin is designed in two basic head styles. For shear applications, the pin is made in countersunk style and in a compact protruding head style. For tension applications, the MS24694 countersunk and regular protruding head styles are available.

Figure 4-105. Hi-Lok®.

Figure 4-105. Hi-Lok®.

The self-locking, threaded Hi-Lok® collar has an internal counterbore at the base to accommodate variations in material thickness. At the opposite end of the collar is a wrenching device that is torqued by the driving tool until it shears off during installation, leaving the lower portion of the collar seated with the proper torque without additional torque inspection. This shear-off point occurs when a predetermined preload or clamp-up is attained in the fastener during installation.

The advantages of Hi-Lok® two-piece fastener include its light weight, high fatigue resistance, high strength, and its inability to be overtorqued. The pins, made from alloy steel, corrosion resistant steel, or titanium alloy, come in many standard and oversized shank diameters. The collars are made of aluminum alloy, corrosion resistant steel, or alloy steel. The collars have wrenching flats, fracture point, threads, and a recess. The wrenching flats are used to install the collar. The fracture point has been designed to allow the wrenching flats to shear when the proper torque has been reached. The threads match the threads of the pins and have been formed into an ellipse that is distorted to provide the locking action. The recess serves as a built-in washer. This area contains a portion of the shank and the transition area of the fastener.

The hole shall be prepared so that the maximum interference fit does not exceed 0.002-inch. This avoids build up of excessive internal stresses in the work adjacent to the hole. The Hi-Lok® pin has a slight radius under its head to increase fatigue life. After drilling, deburr the edge of the hole to allow the head to seat fully in the hole. The Hi-Lok® is installed in interference fit holes for aluminum structure and a clearance fit for steel, titanium, and composite materials.

Hi-Tigue® Fastening System

The Hi-Tigue® fastener offers all of the benefits of the Hi- Lok® fastening system along with a unique bead design that enhances the fatigue performance of the structure making it ideal for situations that require a controlled interference fit. The Hi-Tigue® fastener assembly consists of a pin and collar. These pin rivets have a radius at the transition area. During installation in an interference fit hole, the radius area will “cold work” the hole. These fastening systems can be easily confused, and visual reference should not be used for identification. Use part numbers to identify these fasteners.

Hi-Lite® Fastening System

The Hi-Lite® fastener is similar in design and principle to the Hi-Lok® fastener, but the Hi-Lite® fastener has a shorter transition area between the shank and the first load-bearing thread. Hi-Lite® has approximately one less thread. All Hi- Lite® fasteners are made of titanium.

These differences reduce the weight of the Hi-Lite® fastener without lessening the shear strength, but the Hi-Lite® clamping forces are less than that of a Hi-Lok® fastener. The Hi-Lite® collars are also different and thus are not interchangeable with Hi-Lok® collars. Hi-Lite® fasteners can be replaced with Hi-Lok® fasteners for most applications, but Hi-Loks® cannot be replaced with Hi-Lites®.

CherryBUCK® 95 KSI One-Piece Shear Pin

The CherryBUCK® is a bimetallic, one-piece fastener that combines a 95 KSI shear strength shank with a ductile, titanium-columbium tail. Theses fasteners are functionally interchangeable with comparable 6AI-4V titanium alloy two-piece shear fasteners, but with a number of advantages. Their one piece design means no foreign object damage (FOD), it has a 600 °F allowable temperature, and a very low backside profile.