Structural Fasteners – Solid Shank Rivets – Riveting Procedure (Part One)

in Aircraft Metal Structural Repair

Riveting Procedure

The riveting procedure consists of transferring and preparing the hole, drilling, and driving the rivets.


Hole Transfer

Accomplish transfer of holes from a drilled part to another part by placing the second part over first and using established holes as a guide. Using an alternate method, scribe hole location through from drilled part onto part to be drilled, spot with a center punch, and drill.

Hole Preparation

It is very important that the rivet hole be of the correct size and shape and free from burrs. If the hole is too small, the protective coating is scratched from the rivet when the rivet is driven through the hole. If the hole is too large, the rivet does not fill the hole completely. When it is bucked, the joint does not develop its full strength, and structural failure may occur at that spot.

If countersinking is required, consider the thickness of the metal and adopt the countersinking method recommended for that thickness. If dimpling is required, keep hammer blows or dimpling pressures to a minimum so that no undue work hardening occurs in the surrounding area.

Drilling

Rivet holes in repair may be drilled with either a light power drill or a hand drill. The standard shank twist drill is most commonly used. Drill bit sizes for rivet holes should be the smallest size that permits easy insertion of the rivet, approximately 0.003-inch greater than the largest tolerance of the shank diameter. The recommended clearance drill bits for the common rivet diameters are shown in Figure 4-90. Hole sizes for other fasteners are normally found on work documents, prints, or in manuals.

Figure 4-90. Drill sizes for standard rivets.

Figure 4-90. Drill sizes for standard rivets.

Before drilling, center punch all rivet locations. The center punch mark should be large enough to prevent the drill from slipping out of position, yet it must not dent the surface surrounding the center punch mark. Place a bucking bar behind the metal during punching to help prevent denting. To make a rivet hole the correct size, first drill a slightly undersized hole (pilot hole). Ream the pilot hole with a twist drill of the appropriate size to obtain the required dimension.

To drill, proceed as follows:

  1. Ensure the drill bit is the correct size and shape.
  2. Place the drill in the center-punched mark. When using a power drill, rotate the bit a few turns before starting the motor.
  3. While drilling, always hold the drill at a 90º angle to the work or the curvature of the material.
  4. Avoid excessive pressure, let the drill bit do the cutting, and never push the drill bit through stock.
  5. Remove all burrs with a metal countersink or a file.
  6. Clean away all drill chips.

When holes are drilled through sheet metal, small burrs are formed around the edge of the hole. This is especially true when using a hand drill because the drill speed is slow and there is a tendency to apply more pressure per drill revolution. Remove all burrs with a burr remover or larger size drill bit before riveting.

Driving the Rivet

Although riveting equipment can be either stationary or portable, portable riveting equipment is the most common type of riveting equipment used to drive solid shank rivets in airframe repair work.

Before driving any rivets into the sheet metal parts, be sure all holes line up perfectly, all shavings and burrs have been removed, and the parts to be riveted are securely fastened with temporary fasteners. Depending on the job, the riveting process may require one or two people. In solo riveting, the riveter holds a bucking bar with one hand and operates a riveting gun with the other.

If the job requires two aircraft technicians, a shooter, or gunner, and a bucker work together as a team to install rivets.

An important component of team riveting is an efficient signaling system that communicates the status of the riveting process. This signaling system usually consists of tapping the bucking bar against the work and is often called the tap code. One tap may mean not fully seated, hit it again, while two taps may mean good rivet, and three taps may mean bad rivet, remove and drive another. Radio sets are also available for communication between the technicians.

Once the rivet is installed, there should be no evidence of rotation of rivets or looseness of riveted parts. After the trimming operation, examine for tightness. Apply a force of 10 pounds to the trimmed stem. A tight stem is one indication of an acceptable rivet installation. Any degree of looseness indicates an oversize hole and requires replacement of the rivet with an oversize shank diameter rivet. A rivet installation is assumed satisfactory when the rivet head is seated snugly against the item to be retained (0.005-inch feeler gauge should not go under rivet head for more than one-half the circumference) and the stem is proved tight.

Countersunk Rivets

An improperly made countersink reduces the strength of a flush-riveted joint and may even cause failure of the sheet or the rivet head. The two methods of countersinking commonly used for flush riveting in aircraft construction and repair are:

  • Machine or drill countersinking.
  • Dimpling or press countersinking.

The proper method for any particular application depends on the thickness of the parts to be riveted, the height and angle of the countersunk head, the tools available, and accessibility.

Countersinking

When using countersunk rivets, it is necessary to make a conical recess in the skin for the head. The type of countersink required depends upon the relation of the thickness of the sheets to the depth of the rivet head. Use the proper degree and diameter countersink and cut only deep enough for the rivet head and metal to form a flush surface.

Countersinking is an important factor in the design of fastener patterns, as the removal of material in the countersinking process necessitates an increase in the number of fasteners to assure the required load-transfer strength. If countersinking is done on metal below a certain thickness, a knife edge with less than the minimum bearing surface or actual enlarging of the hole may result. The edge distance required when using countersunk fasteners is greater than when universal head fasteners are used.

The general rule for countersinking and flush fastener installation procedures has been reevaluated in recent years because countersunk holes have been responsible for fatigue cracks in aircraft pressurized skin. In the past, the general rule for countersinking held that the fastener head must be contained within the outer sheet. A combination of countersinks too deep (creating a knife edge), number of pressurization cycles, fatigue, deterioration of bonding materials, and working fasteners caused a high stress concentration that resulted in skin cracks and fastener failures. In primary structure and pressurized skin repairs, some manufacturers are currently recommending the countersink depth be no more than 2⁄3 the outer sheet thickness or down to 0.020-inch minimum fastener shank depth, whichever is greater. Dimple the skin if it is too thin for machine countersinking. [Figure 4-91]

Figure 4-91. Countersinking dimensions.

Figure 4-91. Countersinking dimensions.

Keep the rivet high before driving to ensure the force of riveting is applied to the rivet and not to the skin. If the rivet is driven while it is flush or too deep, the surrounding skin is work hardened.