Soldering Metals

in Aircraft Welding


Soft solder is chiefly used to join copper and brass where a leak proof joint is desired, and sometimes for fitting joints to promote rigidity and prevent corrosion. Soft soldering is generally performed only in minor repair jobs. Soft solder is also used to join electrical connections. It forms a strong union with low electrical resistance.

Soft soldering does not require the heat of an oxy-fuel gas torch and can be performed using a small propane or MAPP® torch, an electrical soldering iron, or in some cases, a soldering copper, that is heated by an outside source, such as an oven or torch. The soft solders are chiefly alloys of tin and lead. The percentages of tin and lead vary considerably in the various solders with a corresponding change in their melting points ranging from 293 °F to 592 °F. Half-and-half (50/50) is the most common general-purpose solder. It contains equal portions of tin and lead and melts at approximately 360 °F.

To get the best results for heat transfer when using an electrical soldering iron or a soldering copper, the tip must be clean and have a layer of solder on it. This is usually referred to as being tinned. The hot iron or copper should be fluxed and the solder wiped across the tip to form a bright, thin layer of solder.

Flux is used with soft solder for the same reasons as with brazing. It cleans the surface area to be joined and promotes the flow by capillary action into the joint. Most fluxes should be cleaned away after the job is completed because they cause corrosion. Electrical connections should be soldered only with soft solder containing rosin. Rosin does not corrode the electrical connection.

Aluminum Soldering

The soldering of aluminum is much like the soldering of other metals. The use of special aluminum solders is required, along with the necessary flux. Aluminum soldering occurs at temperatures below 875 °F. Soldering can be accomplished using the oxy-acetylene, oxy-hydrogen, or even an airpropane torch setup. A neutral flame is used in the case of either oxy-acetylene or oxy-hydrogen. Depending on the solder and flux type, most common aluminum alloys can be soldered. Being of lower melting temperature, a tip one or two sizes smaller than required for welding is used, along with a soft flame setting.

Joint configurations for aluminum soldering follow the same guidelines as any other base material. Lap joints are preferred to tee or butt joints due to the larger surface contact area. However parts, such as heat exchanger tubes, are a common exception to this.

Normally, the parts are cleaned as for welding or brazing, and the flux is applied according to manufacturer’s instructions. The parts are evenly heated with the outer envelope of the flame to avoid overheating the flux, and the solder is applied in a fashion similar to that for other base metals. Cleaning after soldering may not be required to prevent oxidation because some fluxes are not corrosive. However, it is always advisable to remove all flux residues after soldering.

Aluminum soldering is commonly used in such applications as the repair of heat exchanger or radiator cores originally using a soldered joint. It is not, however, to be used as a direct replacement repair for brazing or welding.

Silver Soldering

The principle use of silver solder in aircraft work is in the fabrication of high-pressure oxygen lines and other parts that must withstand vibration and high temperatures.

Silver solder is used extensively to join copper and its alloys, nickel and silver, as well as various combinations of these metals and thin steel parts. Silver soldering produces joints of higher strength than those produced by other brazing processes.

Flux must be used in all silver soldering operations to ensure the base metal is chemically clean. The flux removes the film of oxide from the base metal and allows the silver solder to adhere to it.

All silver solder joints must be physically, as well as chemically, clean. The joint must be free of dirt, grease, oil, and/or paint. After removing the dirt, grease, etc., any oxide (rust and/or corrosion) should be removed by grinding or filing the piece until bright metal can be seen. During the soldering operation, the flux continues to keep the oxide away from the metal and aid in the flow of the solder.

The three recommended types of joint for silver soldering are lap, flanged, and edge. With these, the metal is formed to furnish a seam wider than the base metal thickness and provide the type of joint that holds up under all types of loads. [Figure 5-27]

Figure 5-27. Silver solder joints.

Figure 5-27. Silver solder joints.

The oxy-acetylene flame for silver soldering should be a soft neutral or slightly reducing flame. That is, a flame with a slight excess of acetylene. During both preheating and application of the solder, the tip of the inner cone of the flame should be held about 1⁄2-inch from the work. The flame should be kept moving so that the metal does not overheat.

When both parts of the base metal are at the correct temperature, the flux flows and solder can be applied directly adjacent to the edge of the seam. It is necessary to simultaneously direct the flame over the seam and keep it moving so that the base metal remains at an even temperature.