# Simple Machines – The Pulley

in Physics

Pulleys are simple machines in the form of a wheel mounted on a fixed axis and supported by a frame. The wheel, or disk, is normally grooved to accommodate a rope. The wheel is sometimes referred to as a “sheave” (sometimes “sheaf”). The frame that supports the wheel is called a block. A block and tackle consists of a pair of blocks. Each block contains one or more pulleys and a rope connecting the pulley(s) of each block.

Single Fixed Pulley

A single fixed pulley is really a first class lever with equal arms. In Figure 3-10, the arm from point “R” to point “F” is equal to the arm from point “F” to point “E” (both distances being equal to the radius of the pulley). When a first class lever has equal arms, the mechanical advantage is 1. Thus, the force of the pull on the rope must be equal to the weight of the object being lifted. The only advantage of a single fixed pulley is to change the direction of the force, or pull on the rope.

Figure 3-10. Single fixed pulley.

Single Movable Pulley

A single pulley can be used to magnify the force exerted. In Figure 3-11, the pulley is movable, and both ropes extending up from the pulley are sharing in the support of the weight. This single movable pulley acts like a second class lever, with the effort arm (EF) being the diameter of the pulley and the resistance arm (FR) being the radius of the pulley. This type of pulley would have a mechanical advantage of two because the diameter of the pulley is double the radius of the pulley. In use, if someone pulled in 4 ft of the effort rope, the weight would only rise off the floor 2 ft. If the weight was 100 lb, the effort applied would only need to be 50 lb. With this type of pulley, the effort will always be one-half of the weight being lifted.

Figure 3-11. Single movable pulley.

Block and Tackle

A block and tackle is made up of multiple pulleys, some of them fixed and some movable. In Figure 3-12, the block and tackle is made up of four pulleys, the top two being fixed and the bottom two being movable. Viewing the figure from right to left, notice there are four ropes supporting the weight and a fifth rope where the effort is applied. The number of weight supporting ropes determines the mechanical advantage of a block and tackle, so in this case the mechanical advantage is four. If the weight was 200 lb, it would require a 50 lb effort to lift it.

Figure 3-12. Block and tackle.