Requirements and Characteristics of Reciprocating Engine Lubricants (Part Two) Specific Gravity

in Lubrication and Cooling Systems

Specific gravity is a comparison of the weight of the substance to the weight of an equal volume of distilled water at a specified temperature. As an example, water weighs approximately 8 pounds to the gallon; oil with a specific gravity of 0.9 would weigh 7.2 pounds to the gallon.

In the early years, the performance of aircraft piston engines was such that they could be lubricated satisfactorily by means of straight mineral oils, blended from specially selected petroleum base stocks. Oil grades 65, 80, 100, and 120 are straight mineral oils blended from selected high-viscosity index base oils. These oils do not contain any additives except for very small amounts of pour point depressant, which helps improve fluidity at very low temperatures, and an antioxidant. This type of oil is used during the break-in period of a new aviation piston engine or those recently overhauled.

Demand for oils with higher degrees of thermal and oxidation stability necessitated fortifying them with the addition of small quantities of nonpetroleum materials. The first additives incorporated in straight mineral piston engine oils were based on the metallic salts of barium and calcium. In most engines, the performance of these oils with respect to oxidation and thermal stability was excellent, but the combustion chambers of the majority of engines could not tolerate the presence of the ash deposits derived from these metal-containing additives. To overcome the disadvantages of harmful combustion chamber deposits, a nonmetallic (i.e., non-ash forming, polymeric) additive was developed that was incorporated in blends of selected mineral oil base stocks. W oils are of the ashless type and are still in use. The ashless dispersant grades contain additives, one of which has a viscosity stabilizing effect that removes the tendency of the oil to thin out at high oil temperatures and thicken at low oil temperatures.

The additives in these oils extend operating temperature range and improve cold engine starting and lubrication of the engine during the critical warm-up period permitting flight through wider ranges of climatic changes without the necessity of changing oil.

Semi-synthetic multigrade SAE W15 W50 oil for piston engines has been in use for some time. Oils W80, W100, and W120 are ashless dispersant oils specifically developed for aviation piston engines. They combine nonmetallic additives with selected high viscosity index base oils to give exceptional stability, dispersancy, and antifoaming performance. Dispersancy is the ability of the oil to hold particles in suspension until they can either be trapped by the filter or drained at the next oil change. The dispersancy additive is not a detergent and does not clean previously formed deposits from the interior of the engine.

Some multigrade oil is a blend of synthetic and mineralbased oil semisynthetic, plus a highly effective additive package, that is added due to concern that fully synthetic oil may not have the solvency to handle the lead deposits that result from the use of leaded fuel. As multigrade oil, it offers the flexibility to lubricate effectively over a wider range of temperatures than monograde oils. Compared to monograde oil, multigrade oil provides better cold-start protection and a stronger lubricant film (higher viscosity) at typical operating temperatures. The combination of nonmetallic, antiwear additives and selected high viscosity index mineral and synthetic base oils give exceptional stability, dispersancy, and antifoaming performance. Start up can contribute up to 80 percent of normal engine wear due to lack of lubrication during the start-up cycle. The more easily the oil flows to the engine’s components at start up, the less wear occurs.

The ashless dispersant grades are recommended for aircraft engines subjected to wide variations of ambient temperature, particularly the turbocharged series engines that require oil to activate the various turbo controllers. At temperatures below 20 °F, preheating of the engine and oil supply tank is normally required regardless of the type of oil used.

Premium, semisynthetic multigrade ashless dispersant oil is a special blend of a high-quality mineral oil and synthetic hydrocarbons with an advanced additive package that has been specifically formulated for multigrade applications. The ashless antiwear additive provides exceptional wear protection for wearing surfaces.

Many aircraft manufacturers add approved preservative lubricating oil to protect new engines from rust and corrosion at the time the aircraft leaves the factory. This preservative oil should be removed at end of the first 25 hours of operation. When adding oil during the period when preservative oil is in the engine, use only aviation grade straight mineral oil or ashless dispersant oil, as required, of the viscosity desired.

If ashless dispersant oil is used in a new engine, or a newly overhauled engine, high oil consumption might possibly be experienced. The additives in some of these ashless dispersant oils may retard the break in of the piston rings and cylinder walls. This condition can be avoided by the use of mineral oil until normal oil consumption is obtained, then change to the ashless dispersant oil. Mineral oil should also be used following the replacement of one or more cylinders or until the oil consumption has stabilized.

In all cases, refer to the manufacturers’ information when oil type or time in service is being considered.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: