Propeller Inspection and Maintenance

in Propellers

Propellers must be inspected regularly. The exact time interval for particular propeller inspections is usually specified by the propeller manufacturer. The regular daily inspection of propellers varies little from one type to another.

Typically, it is a visual inspection of propeller blades, hubs, controls, and accessories for security, safety, and general condition. Visual inspection of the blades does not mean a careless or casual observation. The inspection should be meticulous enough to detect any flaw or defect that may exist. Inspections performed at greater intervals of time (e.g., 25, 50, or 100 hours) usually include a visual check of:

  1. Blades, spinners, and other external surfaces for excessive oil or grease deposits.
  2. Weld and braze sections of blades and hubs for evidence of failure.
  3. Blade, spinner, and hubs for nicks, scratches, or other flaws. Use a magnifying glass if necessary.
  4. Spinner or dome shell attaching screws for tightness.
  5. The lubricating requirements and oil levels, when applicable.

If a propeller is involved in an accident, and a possibility exists that internal damage may have occurred, or if a propeller has had a ground strike or sudden stoppage, the recommendations of the engine and propeller need to be adhered to. The propeller should be disassembled and inspected. Whenever a propeller is removed from a shaft, the hub cone seats, cones, and other contact parts should be examined to detect undue wear, galling, or corrosion.

It is also vitally important to keep up-to-date airworthiness directives (ADs) or service bulletins (SBs) for a propeller. Compliance with ADs is required to make the airplane legally airworthy, but it is also important to follow the SBs. All work performed on the propeller, including AD and SB compliance, should be noted in the propeller logbook.

The propeller inspection requirements and maintenance procedures discussed in this section are representative of those in widespread use on most of the propellers described in this chapter. No attempt has been made to include detailed maintenance procedures for a particular propeller, and all pressures, figures, and sizes are solely for the purpose of illustration and do not have specific application. For maintenance information on a specific propeller, always refer to applicable manufacturer instructions.

Wood Propeller Inspection

Wood propellers should be inspected frequently to ensure airworthiness. Inspect for defects, such as cracks, dents, warpage, glue failure, delamination defects in the finish, and charring of the wood between the propeller and the flange due to loose propeller mounting bolts. Examine the wood close to the metal sleeve of wood blades for cracks extending outward on the blade. These cracks sometimes occur at the threaded ends of the lag screws and may be an indication of internal cracking of the wood. Check the tightness of the lag screws, which attach the metal sleeve to the wood blade, in accordance with the manufacturer’s instructions.

In-flight tip failures may be avoided by frequent inspections of the metal cap, leading edge strip, and surrounding areas. Inspect for such defects as looseness or slipping, separation of soldered joints, loose screws, loose rivets, breaks, cracks, eroded sections, and corrosion. Inspect for separation between the metal leading edge and the cap, which would indicate the cap is moving outward in the direction of centrifugal force. This condition is often accompanied by discoloration and loose rivets. Inspect the tip for cracks by grasping it with the hand and slightly twisting about the longitudinal blade centerline and by slightly bending the tip backward and forward. If the leading edge and the cap have separated, carefully inspect for cracks at this point. Cracks usually start at the leading edge of the blade. Inspect moisture holes are open. A fine line appearing in the fabric or plastic may indicate a crack in the wood. Check the trailing edge of the propeller blades for bonding, separation, or damage.

Metal Propeller Inspection

Metal propellers and blades are generally susceptible to fatigue failure resulting from the concentration of stresses at the bottoms of sharp nicks, cuts, and scratches. It is necessary, therefore, to frequently and carefully inspect them for such defects. The inspection of steel blades may be accomplished by either visual, fluorescent penetrant, or magnetic particle inspection. The visual inspection is easier if the steel blades are covered with engine oil or rust-preventive compound. The full length of the leading edge (especially near the tip), the full length of the trailing edge, the grooves and shoulders on the shank, and all dents and scars should be examined with a magnifying glass to decide whether defects are scratches or cracks.

Tachometer inspection is a very important part of the overall propeller inspection. Operation with an inaccurate tachometer may result in restricted rpm operation and damaging high stresses. This could shorten blade life and could result in catastrophic failure. If the tachometer is inaccurate, then the propeller could be turning much faster than it is rated to turn, providing extra stress. Accuracy of the engine tachometer should be verified at 100-hour intervals or at annual inspection, whichever occurs first. Hartzell Propeller recommends using a tachometer that is accurate within ± 10 rpm, and has an appropriate calibration schedule.

Aluminum Propeller Inspection

Carefully inspect aluminum propellers and blades for cracks and other flaws. A transverse crack or flaw of any size is cause for rejection. Multiple deep nicks and gouges on the leading edge and face of the blade is cause for rejection. Use dye penetrant or fluorescent dye penetrant to confirm suspected cracks found in the propeller. Refer any unusual condition or appearance revealed by these inspections to the manufacturer.

Figure 7-32. Composite blade construction

Figure 7-32. Composite blade construction

Composite Propeller Inspection

Composite blades need to be visually inspected for nicks, gouges, loose material, erosion, cracks and debonds, and lightning strike. [Figure 7-32] Composite blades are inspected for delaminations and debonds by tapping the blade or cuff (if applicable) with a metal coin. If an audible change is apparent, sounding hollow or dead, a debond or delamination is likely. [Figure 7-33] Blades that incorporate a “cuff” have a different tone when coin tapped in the cuff area. To avoid confusing the sounds, coin tap the cuff area and the transition area between the cuff and the blade separately from the blade area. Additional nondestructive testing (NDT) techniques for composite materials, such as phased array inspections, and ultrasound inspections, are available for more detailed inspections.

Figure 7-33. Coin-tap test to check for debonds and delaminations.

Figure 7-33. Coin-tap test to check for debonds and delaminations.

Repairs to propellers are often limited to minor type repairs. Certificated mechanics are not allowed to perform major repairs on propellers. Major repairs need to be accomplished by a certificated propeller repair station.