Layout and Forming (Part Five)

in Aircraft Metal Structural Repair

Shrinking With V-Block and Shrinking Block Methods

Curving an extruded or formed angle strip by shrinking may be accomplished by either the previously discussed V-block method or the shrinking block method. While the V-block is more satisfactory because it is faster, easier, and affects the metal less, good results can be obtained by the shrinking block method.


In the V-block method, place one flange of the angle strip flat on the V-block with the other flange extending upward. Using the process outlined in the stretching paragraphs, begin at one end of the angle strip and work back and forth making light blows. Strike the edge of the flange at a slight angle to keep the vertical flange from bending outward.

Occasionally, check the curve for accuracy with the pattern. If a sharp curve is made, the angle (cross section of the formed angle) closes slightly. To avoid such closing of the angle, clamp the angle strip to a hardwood board with the hammered flange facing upward using small C-clamps. The jaws of the C-clamps should be covered with masking tape. If the angle has already closed, bring the flange back to the correct angle with a few blows of a mallet or with the aid of a small hardwood block. If any portion of the angle strip is curved too much, reduce it by reversing the angle on the V-block and hammering with a suitable mallet, as explained in the previous paragraph on stretching. After obtaining the proper curve, smooth the entire angle by planishing with a soft-faced mallet.

If the curve in a formed angle is to be quite sharp or if the flanges of the angle are rather broad, the shrinking block method is generally used. In this process, crimp the flange that is to form the inside of the curve.

When making a crimp, hold the crimping pliers so that the jaws are about 1⁄8-inch apart. By rotating the wrist back and forth, bring the upper jaw of the pliers into contact with the flange, first on one side and then on the other side of the lower jaw. Complete the crimp by working a raised portion into the flange, gradually increasing the twisting motion of the pliers. Do not make the crimp too large because it will be difficult to work out. The size of the crimp depends upon the thickness and softness of the material, but usually about 1⁄4-inch is sufficient. Place several crimps spaced evenly along the desired curve with enough space left between each crimp so that jaws of the shrinking block can easily be attached.

After completing the crimping, place the crimped flange in the shrinking block so that one crimp at a time is located between the jaws. [Figure 4-151] Flatten each crimp with light blows of a soft-faced mallet, starting at the apex (the closed end) of the crimp and gradually working toward the edge of the flange. Check the curve of the angle with the pattern periodically during the forming process and again after all the crimps have been worked out. If it is necessary to increase the curve, add more crimps and repeat the process. Space the additional crimps between the original ones so that the metal does not become unduly work hardened at any one point. If the curve needs to be increased or decreased slightly at any point, use the V-block.

Figure 4-151. Crimping a metal flange in order to form a curve.

Figure 4-151. Crimping a metal flange in order to form a curve.

After obtaining the desired curve, planish the angle strip over a stake or a wooden form.

Flanged Angles

The forming process for the following two flanged angles is slightly more complicated than the previously discussed angles because the bend is shorter (not gradually curved) and necessitates shrinking or stretching in a small or concentrated area. If the flange is to point toward the inside of the bend, the material must be shrunk. If it is to point toward the outside, it must be stretched.

Shrinking

In forming a flanged angle by shrinking, use wooden forming blocks similar to those shown in Figure 4-152 and proceed as follows:

  1. Cut the metal to size, allowing for trimming after forming. Determine the bend allowance for a 90° bend and round the edge of the forming block accordingly.
  2. Clamp the material in the form blocks as shown in Figure 4-96, and bend the exposed flange against the block. After bending, tap the blocks slightly. This induces a setting process in the bend.
  3. Using a soft-faced shrinking mallet, start hammering near the center and work the flange down gradually toward both ends. The flange tends to buckle at the bend because the material is made to occupy less space. Work the material into several small buckles instead of one large one and work each buckle out gradually by hammering lightly and gradually compressing the material in each buckle. The use of a small hardwood wedge block aids in working out the buckles. [Figure 4-153]
  4. Planish the flange after it is flattened against the form block and remove small irregularities. If the form blocks are made of hardwood, use a metal planishing hammer. If the forms are made of metal, use a softfaced mallet. Trim the excess material away and file and polish.
Figure 4-152. Forming a flanged angle using forming blocks.

Figure 4-152. Forming a flanged angle using forming blocks.

Figure 4-153. Shrinking.

Figure 4-153. Shrinking.

Stretching

To form a flanged angle by stretching, use the same forming blocks, wooden wedge block, and mallet as used in the shrinking process and proceed as follows:

  1. Cut the material to size (allowing for trim), determine bend allowance for a 90° bend, and round off the edge of the block to conform to the desired radius of bend.
  2. Clamp the material in the form blocks. [Figure 4-154]
  3. Using a soft-faced stretching mallet, start hammering near the ends and work the flange down smoothly and gradually to prevent cracking and splitting. Planish the flange and angle as described in the previous procedure, and trim and smooth the edges, if necessary.
Figure 4-154. Stretching a flanged angle.

Figure 4-154. Stretching a flanged angle.

Curved Flanged Parts

Curved flanged parts are usually hand formed with a concave flange, the inside edge, and a convex flange, the outside edge.

The concave flange is formed by stretching, while the convex flange is formed by shrinking. Such parts are shaped with the aid of hardwood or metal forming blocks. [Figure 4-155] These blocks are made in pairs and are designed specifically for the shape of the area being formed. These blocks are made in pairs similar to those used for straight angle bends and are identified in the same manner. They differ in that they are made specifically for the particular part to be formed, they fit each other exactly, and they conform to the actual dimensions and contour of the finished article.

Figure 4-155. Forming blocks.

Figure 4-155. Forming blocks.

The forming blocks may be equipped with small aligning pins to help line up the blocks and to hold the metal in place or they may be held together by C-clamps or a vise. They also may be held together with bolts by drilling through form blocks and the metal, provided the holes do not affect the strength of the finished part. The edges of the forming block are rounded to give the correct radius of bend to the part, and are undercut approximately 5° to allow for spring-back of the metal. This undercut is especially important if the material is hard or if the bend must be accurate.

The nose rib offers a good example of forming a curved flange because it incorporates both stretching and shrinking (by crimping). They usually have a concave flange, the inside edge, and a convex flange, the outside edge. Note the various types of forming represented in the following figures. In the plain nose rib, only one large convex flange is used. [Figure 4-156] Because of the great distance around the part and the likelihood of buckles in forming, it is rather difficult to form. The flange and the beaded (raised ridge on sheet metal used to stiffen the piece) portion of this rib provide sufficient strength to make this a good type to use.

Figure 4-156. Plain nose rib.

Figure 4-156. Plain nose rib.

In Figure 4-157, the concave flange is difficult to form, but the outside flange is broken up into smaller sections by relief holes. In Figure 4-158, note that crimps are placed at equally spaced intervals to absorb material and cause curving, while also giving strength to the part.

Figure 4-157. Nose rib with relief holes.

Figure 4-157. Nose rib with relief holes.

Figure 4-158. Nose rib with crimps.

Figure 4-158. Nose rib with crimps.

In Figure 4-159, the nose rib is formed by crimping, beading, putting in relief holes, and using a formed angle riveted on each end. The beads and the formed angles supply strength to the part. The basic steps in forming a curved flange follow: [Figures 4-160 and 161]

Figure 4-159. Nose rib using a combination of forms.

Figure 4-159. Nose rib using a combination of forms.

  1. Cut the material to size, allowing about 1⁄4-inch excess material for trim and drill holes for alignment pins.
  2. Remove all burrs (jagged edges). This reduces the possibility of the material cracking at the edges during the forming process.
  3. Locate and drill holes for alignment pins.
  4. Place the material between the form blocks and clamp blocks tightly in a vise to prevent the material from moving or shifting. Clamp the work as closely as possible to the particular area being hammered to prevent strain on the form blocks and to keep the metal from slipping.
Figure 4-160. Forming a concave flange.

Figure 4-160. Forming a concave flange.

Figure 4-161. Forming a convex flange.

Figure 4-161. Forming a convex flange.

Concave Surfaces

Bend the flange on the concave curve first. This practice may keep the flange from splitting open or cracking when the metal is stretched. Should this occur, a new piece must be made. Using a plastic or rawhide mallet with a smooth, slightly rounded face, start hammering at the extreme ends of the part and continue toward the center of the bend. This procedure permits some of the metal at the ends of the part to be worked into the center of the curve where it is needed. Continue hammering until the metal is gradually worked down over the entire flange, flush with the form block. After the flange is formed, trim off the excess material and check the part for accuracy. [Figure 4-160]

Convex Surfaces

Convex surfaces are formed by shrinking the material over a form block. [Figure 4-161] Using a wooden or plastic shrinking mallet and a backup or wedge block, start at the center of the curve and work toward both ends. Hammer the flange down over the form, striking the metal with glancing blows at an angle of approximately 45° and with a motion that tends to pull the part away from the radius of the form block. Stretch the metal around the radius bend and remove the buckles gradually by hammering on a wedge block. Use the backup block to keep the edge of the flange as nearly perpendicular to the form block as possible. The backup block also lessens the possibility of buckles, splits, or cracks. Finally, trim the flanges of excess metal, planish, remove burrs, round the corners (if any), and check the part for accuracy.