Landing Gear System Maintenance (Part Two)

in Aircraft Landing Gear Systems

Gear Door Clearances

Landing gear doors have specific allowable clearances between the doors and the aircraft structure that must be maintained. Adjustments are typically made at the hinge installations or to the connecting links that support and move the door. On some installations, door hinges are adjusted by placing a serrated hinge with an elongated mounting hole in the proper position in a hinge support fitting. Using serrated washers, the mounting bolt is torqued to hold the position. Figure 13-48 illustrates this type of mounting, which allows linear adjustments via the elongated hole.


Figure 13-48. An adjustable door hinge installation for setting door clearance.

Figure 13-48. An adjustable door hinge installation for setting door clearance.

The distance landing gear doors open or close may depend upon the length of the door linkage. Rod end adjustments are common to fit the door. Adjustments to door stops are also a possibility. The manufacturer’s maintenance manual specifies the length of the linkages and gives procedure for adjusting the stops. Follow all specified procedures that are accomplished with the aircraft on jacks and the gear retracted. Doors that are too tight can cause structural damage. Doors that are too loose catch wind in flight, which could cause wear and potential failure, as well as parasite drag.

Drag and Side Brace Adjustment

Each landing gear has specific adjustments and tolerances per the manufacturer that permit the gear to function as intended. A common geometry used to lock a landing gear in the down position involves a collapsible side brace that is extended and held in an over-center position through the use of a locking link. Springs and actuators may also contribute to the motion of the linkage. Adjustments and tests are needed to ensure proper operation.

Figure 13-49 illustrates a landing gear on a small aircraft with such a side brace. It consists of an upper and lower link hinged at the center that permits the brace to jackknife during retraction of the gear. The upper end pivots on a trunnion attached to structure in the wheel well overhead. The lower end is attached to the shock strut. A locking link is incorporated between the upper end of the shock strut and the lower drag link. It is adjustable to provide the correct amount of over-center travel of the side brace links. This locks the gear securely in the down position to prevent collapse of the gear.

Figure 13-49. Over-center adjustments on a small aircraft main gear.

Figure 13-49. Over-center adjustments on a small aircraft main gear. [click image to enlarge]

To adjust the over-center position of the side brace locking link, the aircraft must be placed on jacks. With the landing gear in the down position, the lock link end fitting is adjusted so that the side brace links are held firmly over-center. When the gear is held inboard six inches from the down and locked position and then released, the gear must free fall into the locked down position.

In addition to the amount the side brace links are adjusted to travel over center, down lock spring tension must also be checked. This is accomplished with a spring scale. The tension on this particular gear is between 40 and 60 pounds. Check the manufacturer’s maintenance data for each aircraft to ensure correct tensions exist and proper adjustments are made.

Landing Gear Retraction Test

The proper functioning of a landing gear system and components can be checked by performing a landing gear retraction test. This is also known as swinging the gear. The aircraft is properly supported on jacks for this check, and the landing gear should be cleaned and lubricated if needed. The gear is then raised and lowered as though the aircraft were in flight while a close visual inspection is performed. All parts of the system should be observed for security and proper operation. The emergency back-up extension system should be checked whenever swinging the gear.

Retraction tests are performed at various times, such as during annual inspection. Any time a landing gear component is replaced that could affect the correct functioning of the landing gear system, a retraction test should follow when adjustments to landing gear linkages or components that affect gear system performance are made. It may be necessary to swing the gear after a hard or overweight landing. It is also common to swing the gear while attempting to locate a malfunction within the system. For all required retraction tests and the specific inspection points to check, consult the manufacturer’s maintenance manual for the aircraft in question as each landing gear system is unique.

The following is a list of general inspection items to be performed while swinging the gear:

  1. Check the landing gear for proper extension and retraction.
  2. Check all switches, lights, and warning devices for proper operation.
  3. Check the landing gear doors for clearance and freedom from binding.
  4. Check landing gear linkage for proper operation, adjustment, and general condition.
  5. Check the alternate/emergency extension or retraction systems for proper operation.
  6. Investigate any unusual sounds, such as those caused by rubbing, binding, chafing, or vibration.