Helicopters in Flight – Blade Flapping

in Physics

To solve the problem of dissymmetry of lift, helicopter designers came up with a hinged design that allows the rotor blade to flap up when it experiences increased lift, and to flap down when it experiences decreased lift. When a rotor blade advances toward the front of the helicopter and experiences an increased velocity of airflow, the increase in lift causes the blade to flap up. This upward motion of the blade changes the direction of the relative wind in relation to the chord line of the blade, and causes the angle of attack to decrease. The decrease in the angle of attack decreases the lift on the blade. The retreating blade experiences a reduced velocity of airflow and reduced lift, and flaps down. By flapping down, the retreating blade ends up with an increased angle of attack and an increase in lift. The end result is the lift on the blades is equalized, and the tendency for the helicopter to roll never materializes.

The semi-rigid and fully articulated rotor systems have flapping hinges that automatically allow the blades to move up or down with changes in lift. The rigid type of rotor system has blades that are flexible enough to bend up or down with changes in lift.