Heat Transfer – Convection

in Physics

Convection is the process by which heat is transferred by movement of a heated fluid (gas or liquid). For example, an incandescent light bulb will, when heated, become increasingly hotter until the air surrounding it begins to move. The motion of the air is upward. This upward motion of the heated air carries the heat away from the hot light bulb by convection. Transfer of heat by convection may be hastened by using a ventilating fan to move the air surrounding a hot object. The rate of cooling of a hot electronics component, such as the CPU in a computer, can be increased if it is provided with copper fins that conduct heat away from the hot surface. The fins provide large surfaces against which cool air can be blown.

A convection process may take place in a liquid as well as in a gas. A good example of this is a pan of water sitting on the stove. The bottom of the pan becomes hot because it conducts heat from the surface it is in contact with. The water on the bottom of the pan also heats up because of conduction. As the heated water starts to rise and cooler water moves in to take its place, the convection process begins.

When the circulation of gas or liquid is not rapid enough to remove sufficient heat, fans or pumps are used to accelerate the motion of the cooling material. In some installations, pumps are used to circulate water or oil to help cool large equipment. In airborne installations, electric fans and blowers are used to aid convection.

An aircraft air-cooled piston engine is a good example of convection being used to transfer heat. The engine shown in Figure 3-29 is a Continental IO-520, with six heavily finned air-cooled cylinders. This engine does not depend on natural convection for cooling, but rather forced air convection coming from the propeller on the engine. The heat generated inside the engine finds its way to the cylinder cooling fins by conduction, meaning transfer within the metal of the cylinder. Once the heat gets to the fins, forced air flowing around the cylinders carries the heat away.

Figure 3-29. Aircraft piston engine cooled by convection.

Figure 3-29. Aircraft piston engine cooled by convection.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: