Gas Welding and Cutting Equipment (Part Four)

in Aircraft Welding

Lighting and Adjusting the Torch

With the proper working pressures set for the acetylene and oxygen, open the torch acetylene valve a quarter to a half turn. Direct the torch away from the body and ignite the acetylene gas with the flint striker. Open the acetylene valve until the black sooty smoke disappears from the flame. The pure acetylene flame is long, bushy, and has a yellowish color. Open the torch oxygen valve slowly and the flame shortens and turns to a bluish-white color that forms a bright inner luminous cone surrounded by an outer flame envelope. This is a neutral flame that should be set before either a carburizing or oxidizing flame mixture is set.

Different Flames

The three types of flame commonly used for welding are neutral, carburizing, and oxidizing. Each serves a specific purpose. [Figure 5-22]

Figure 5-22. Oxy-acetylene flames.

Figure 5-22. Oxy-acetylene flames.

Neutral Flame

The neutral flame burns at approximately 5,850 °F at the tip of the inner luminous cone and is produced by a balanced mixture of acetylene and oxygen supplied by the torch. The neutral flame is used for most welding because it does not alter the composition of the base metal. When using this flame on steel, the molten metal puddle is quiet and clear, and the metal flows to give a thoroughly fused weld without burning or sparking.

Carburizing Flame

The carburizing flame burns at approximately 5,700 °F at the tip of the inner core. It is also referred to as a reducing flame because it tends to reduce the amount of oxygen in the iron oxides. The flame burns with a coarse rushing sound, and has a bluish-white inner cone, a white center cone, and a light blue outer cone.

The flame is produced by burning more acetylene than oxygen, and can be recognized by the greenish feathery tip at the end of the cone. The longer the feather, the more acetylene is in the mix. For most welding operations, the length of the feather should be about twice the length of the inner cone.

The carburizing flame is best used for welding high-carbon steels, for hard facing, and for welding such nonferrous alloys as aluminum, nickel, and Monel.

Oxidizing Flame

The oxidizing flame burns at approximately 6,300 °F and is produced by burning an excess of oxygen. It takes about two parts of oxygen to one part acetylene to produce this flame. It can be identified by the shorter outer flame and the small, white, inner cone. To obtain this flame, start with a neutral flame and then open the oxygen valve until the inner cone is about one-tenth of its original length. The oxidizing flame makes a hissing sound, and the inner cone is somewhat pointed and purplish in color at the tip.

The oxidizing flame does have some specific uses. A slightly oxidizing flame is used for bronze welding (brazing) of steel and cast iron. A stronger oxidizing flame is used for fusion welding of brass and bronze. If an oxidizing flame is used on steel, it causes the molten metal to foam, give off sparks, and burn.

Soft or Harsh Flames

With each size of tip, a neutral, carburizing, or oxidizing flame can be obtained. It is also possible to obtain a soft or harsh flame by decreasing or increasing the working pressure of both gases (observing the maximum working pressure of 15 psi for acetylene gas).

For some work, it may be desirable to have a soft or low velocity flame without a reduction of thermal output. This can be achieved by reducing the working pressure using a larger tip and closing the torch valves until the neutral flame is quiet and steady. It is especially desirable to use a soft flame when welding aluminum to avoid blowing holes in the metal when the puddle is formed.

Handling of the Torch

It should be cautioned that improper adjustment or handling of the torch may cause the flame to backfire or, in rare cases, to flashback. A backfire is a momentary backward flow of gases at the torch tip that causes the flame to go out. A backfire may be caused by touching the tip against the work, overheating the tip, by operating the torch at other than recommended pressures, by a loose tip or head, or by dirt or slag in the end of the tip, and may cause molten metal to be splattered when the flame pops.

A flashback is dangerous because it is the burning of gases within the torch. It is usually caused by loose connections, improper pressures, or overheating of the torch. A shrill hissing or squealing noise accompanies a flashback, and unless the gases are turned off immediately, the flame may burn back through the hose and regulators causing great damage and personal injury. The cause of the flashback should always be determined and the problem corrected before relighting the torch. All gas welding outfits should have a flashback arrestor.