Gas Metal Arc Welding (TIG Welding) (Part One)

in Aircraft Welding

The TIG process as it is known today is a combination of the work done by General Electric in the 1920s to develop the basic process, the work done by Northrop in the 1940s to develop the torch itself, and the use of helium shielding gas and a tungsten electrode. The process was developed for welding magnesium in the Northrop XP-56 flying wing to eliminate the corrosion and porosity issues with the atomic hydrogen process they had been using with a boron flux. It was not readily used on other materials until the late 1950s when it found merit in welding space-age super alloys. It was also later used on other metals, such as aluminum and steel, to a much greater degree.

Modern TIG welding machines are offered in DC, AC, or with AC/DC configurations, and use either transformer or inverter-based technology. Typically, a machine capable of AC output is required for aluminum. The TIG torch itself has changed little since the first Northrop patent. TIG welding is similar to oxy-fuel welding in that the heat source (torch) is manipulated with one hand, and the filler, if used, is manipulated with the other. A distinct difference is to control the heat input to the metal. The heat control may be preset and fixed by a machine setting or variable by use of a foot pedal or torch mounted control.


Several types of tungsten electrode are used with the TIG welder. Thoriated and zirconiated electrodes have better electron emission characteristics than pure tungsten, making them more suitable for DC operations on transformer-based machines, or either AC or DC with the newer inverter-based machines. Pure tungsten provides a better current balance with AC welding with a transformer based machine, which is advantageous when welding aluminum and magnesium. The equipment manufacturers’ suggestions for tungsten type and form should be followed as this is an ever changing part of the TIG technology.

The shape of the electrode used in the TIG welding torch is an important factor in the quality and penetration of the weld. The tip of the electrode should be shaped on a dedicated grinding stone or a special-purpose tungsten grinder to avoid contaminating the electrode. The grinding should be done longitudinally, not radially, with the direction of stone travel away from the tip. Figure 5-28 shows the effects of a sharp versus blunt electrode with transformer-based machines.

Figure 5-28. Effects of sharp and blunt electrodes.

Figure 5-28. Effects of sharp and blunt electrodes.

When in doubt, consult the machine manufacturer for the latest up-to-date suggestions on tungsten preparation or if problems arise.

The general guidelines for weld quality, joint fit prior to welding, jigging, and controlling warp all apply to this process in the same regard as any other welding method. Of particular note are the additional process steps that sometimes must be taken to perform a quality weld; these are dealt within their appropriate sections.

TIG Welding 4130 Steel Tubing

Welding 4130 with TIG is not much different than welding other steels as far as technique is concerned. The following information generally addresses material under 0.120- inch thick.

Clean the steel of any oil or grease and use a stainless steel wire brush to clean the work piece prior to welding. This is to prevent porosity and hydrogen embrittlement during the welding process. The TIG process is highly susceptible to these problems, much more so than oxy-acetylene welding, so care must be taken to ensure all oils and paint are removed from all surfaces of the parts to be welded.

Use a TIG welder with high-frequency starting to eliminate arc strikes. Do not weld where there is any breeze or draft; the welds should be allowed to cool slowly. Preheating is not necessary for tubing of less than 0.120-inch wall thickness; however, postweld tempering (stress relieving) is still recommended to prevent the possible brittleness of the area surrounding the weld due to the untempered martensite formations caused by the rapid cooling of the weld inherent to the TIG process.

If you use 4130 filler rod, preheat the work before welding and heat treat afterward to avoid cracking. In a critical situation such as this, engineering should be done to determine preheat and postweld heat treatment needed for the particular application.

Weld at a slower speed, make sufficiently large fillets, and make them flat or slightly convex, not concave. After the welding is complete, allow the weldment to cool to room temperature. Using an oxy-acetylene torch set to a neutral flame, heat the entire weldment evenly to 1,100 °F–1,200 °F; hold this temperature for about 45 minutes per inch of metal thickness. The temperature is generally accepted to be a dull red in ambient lighting. Note that for most tubing sections, the temperature needs to be held for only a minute or two. This process is found in most materials engineering handbooks written by The Materials Information Society (ASM) and other engineering sources. When working on a critical component, seek engineering help if there is any doubt.

TIG Welding Stainless Steel

Stainless steels, or more precisely, corrosion-resisting steels, are a family of iron-based metals that contain chromium in amounts ranging from 10 percent to about 30 percent. Nickel is added to some of the stainless steels, which reduces the thermal conductivity and decreases the electrical conductivity. The chromium-nickel steels belong in the AISI 300 series of stainless steels. They are nonmagnetic and have austenitic microstructure. These steels are used extensively in aircraft in which strength or resistance to corrosion at high temperature is required.

All of the austenitic stainless steels are weldable with most welding processes, with the exception of AISI 303, which contains high sulfur, and AISI 303Se, which contains selenium to improve its machinability.

The austenitic stainless steels are slightly more difficult to weld than mild-carbon steel. They have lower melting temperatures, and a lower coefficient of thermal conductivity, so welding current can be lower. This helps on thinner materials because these stainless steels have a higher coefficient of thermal expansion, requiring special precautions and procedures to be used to reduce warping and distortion. Any of the distortion-reducing techniques, such as skip welding or back-step welding, should be used. Fixtures and/ or jigs should be used where possible. Tack welds should be applied twice as often as normal.

The selection of the filler metal alloy for welding the stainless steel is based on the composition of the base metal. Filler metal alloys for welding austenitic type stainless include AISI No. 309, 310, 316, 317, and 347. It is possible to weld several different stainless base metals with the same filler metal alloy. Follow the manufacturer’s recommendations.

Clean the base metal just prior to welding to prevent the formation of oxides. Clean the surface and joint edges with a nonchlorinated solvent, and brush with a stainless steel wire brush to remove the oxides. Clean the filler material in the same manner.

To form a weld bead, move the torch along the joint at a steady speed using the forehand method. Dip the filler metal into the center of the weld puddle to ensure adequate shielding from the gas.

The base metal needs protection during the welding process by either an inert gas shield, or a backing flux, on both sides of the weld. Back purging uses a separate supply of shielding gas to purge the backside of the weld of any ambient air. Normally, this requires sealing off the tubular structures or using other various forms of shields and tapes to contain the shielding gas. A special flux may also be used on the inside of tubular structures in place of a back purge. This is especially advantageous with exhaust system repairs in which sealing off the entire system is time consuming. The flux is the same as is used for the oxy-acetylene welding process on stainless materials.