Float-Type Carburetors – Float Chamber Mechanism System

in Engine Fuel and Fuel Metering Systems

A float-type carburetor consists essentially of six subsystems that control the quantity of fuel discharged in relation to the flow of air delivered to the engine cylinders. These systems work together to provide the engine with the correct fuel flow during all engine operating ranges.

Figure 2-10. A float-type carburetor.

Figure 2-10. A float-type carburetor.

The essential subsystems of a float-type carburetor are illustrated in Figure 2-10. These systems are:

1. Float chamber mechanism system
2. Main metering system
3. Idling system
4. Mixture control system
5. Accelerating system
6. Economizer system

Float Chamber Mechanism System

A float chamber is provided between the fuel supply and the main metering system of the carburetor. The float chamber, or bowl, serves as a reservoir for fuel in the carburetor. [Figure 2-11] This chamber provides a nearly constant level of fuel to the main discharge nozzle which is usually about 1⁄8″ below the holes in the main discharge nozzle. The fuel level must be maintained slightly below the discharge nozzle outlet holes to provide the correct amount of fuel flow and to prevent fuel leakage from the nozzle when the engine is not operating.

Figure 2-11. Float chamber (bowl) with float removed.

Figure 2-11. Float chamber (bowl) with float removed.

The level of fuel in the float chamber is kept nearly constant by means of a float-operated needle valve and a seat. The needle seat is usually made of bronze. The needle valve is constructed of hardened steel, or it may have a synthetic rubber section which fits the seat. With no fuel in the float chamber, the float drops toward the bottom of the chamber and allows the needle valve to open wide. As fuel is admitted from the supply line, the float rises (floats in the fuel) and closes the needle valve when the fuel reaches a predetermined level. When the engine is running and fuel is being drawn out of the float chamber, the valve assumes an intermediate position so that the valve opening is just sufficient to supply the required amount of fuel and keep the level constant. [Figure 2-10]

With the fuel at the correct level (float chamber), the discharge rate is controlled accurately by the air velocity through the carburetor venturi where a pressure drop at the discharge nozzle causes fuel to flow into the intake airstream. Atmospheric pressure on top of the fuel in the float chamber forces the fuel out the discharge nozzle. A vent or small opening in the top of the float chamber allows air to enter or leave the chamber as the level of fuel rises or falls.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: