The float-type carburetor, the most common of all carburetor types, has several distinct disadvantages. The effect that abrupt maneuvers have on the float action and the fact that its fuel must be discharged at low pressure leads to incomplete vaporization and difficulty in discharging fuel into some types of supercharged systems. The chief disadvantage of the float carburetor, however, is its icing tendency. Since the float carburetor must discharge fuel at a point of low pressure, the discharge nozzle must be located at the venturi throat, and the throttle valve must be on the engine side of the discharge nozzle. This means that the drop in temperature due to fuel vaporization takes place within the venturi. As a result, ice readily forms in the venturi and on the throttle valve.

A pressure-type carburetor discharges fuel into the airstream at a pressure well above atmospheric. This results in better vaporization and permits the discharge of fuel into the airstream on the engine side of the throttle valve. With the discharge nozzle located at this point, the drop in temperature due to fuel vaporization takes place after the air has passed the throttle valve and at a point where engine heat tends to offset it. Thus, the danger of fuel vaporization icing is practically eliminated. The effects of rapid maneuvers and rough air on the pressure-type carburetors are negligible since its fuel chambers remain filled under all operating conditions. Pressure carburetors have been replaced mostly by fuel injection systems and have limited use on modern aircraft engines.

ASA AMT PrepwareASA – AMT General, Airframe and Powerplant Prepware for 2017.  Get ready for your FAA AMT Knowledge Exams with the most trusted source in aviation training.   Includes the contents of the Computer Testing Supplement, with the same FAA legends, figures, and charts you’ll be issued at the testing center before you take your official test.

Previous post:

Next post: