Brake Inspection and Service (Part Two)

in Aircraft Landing Gear Systems

Bleeding Power Brake Systems

Top down brake bleeding is used in power brake systems. Power brakes are supplied with fluid from the aircraft hydraulic system. The hydraulic system should operate without air in the fluid as should the brake system. Therefore, bottom up pressure bleeding is not an option for power brakes. The trapped air in the brake system would be forced into the main hydraulic system, which is not acceptable.


Many aircraft with power brake systems accept the connection of an auxiliary hydraulic mule that can be used to establish pressure in the system for bleeding. Regardless, the aircraft system must be pressurized to bleed power brake systems. Attach a clear hose to the brake bleed port fitting on the brake assembly and immerse the other end of the hose in a container of clean hydraulic fluid. With the bleeder valve open, carefully apply the brake to allow aircraft hydraulic fluid to enter the brake system. The fluid expels the fluid contaminated with air out of the bleed hose into the container. When air is no longer visible in the hose, close the bleed valve and restore the hydraulic system to normal operation configuration.

Power brake systems on different aircraft contain many variations and a wide array of components that may affect the proper bleeding technique to be followed. Consult the manufacturer’s maintenance information for the correct bleeding procedure for each aircraft. Be sure to bleed auxiliary and emergency brake systems when bleeding the normal brake system to ensure proper operation when needed.

Fluid Quantity and Type

As mentioned, it is imperative that the correct hydraulic fluid is used in each brake system. Seals in the brake system are designed for a particular hydraulic fluid. Deterioration and failure occurs when they are exposed to other fluids. Mineralbased fluid, such as MIL-H-5606 (red oil), should never be mixed with phosphate-ester based synthetic hydraulic fluid such as Skydrol®. Contaminated brake/hydraulic systems must have all of the fluid evacuated and all seals replaced before the aircraft is released for flight.

Fluid quantity is also important. The technician is responsible for determining the method used to ascertain when the brake and hydraulic systems are fully serviced and for the maintenance of the fluid at this level. Consult the manufacturer’s specifications for this information.

Inspection for Leaks

Aircraft brake systems should maintain all fluid inside lines and components and should not leak. Any evidence of a leak must be investigated for its cause. It is possible that the leak is a precursor to more significant damage that can be repaired, thus avoiding an incident or accident. [Figure 13-120]

Figure 13-120. The cause of all aircraft brake leaks must be investigated, repaired, and tested before releasing the aircraft for flight.

Figure 13-120. The cause of all aircraft brake leaks must be investigated, repaired, and tested before releasing the aircraft for flight.

Many leaks are found at brake system fittings. While this type of leak may be fixed by tightening an obviously loose connection, the technician is cautioned against overtightening fittings. Removal of hydraulic pressure from the brake system followed by disconnection and inspection of the connectors is recommended. Over-tightening of fitting can cause damage and make the leak worse. MS flareless fitting are particularly sensitive to over-tightening. Replace all fittings suspected of damage. Once any leak is repaired, the brake system must be re-pressurized and tested for function as well as to ensure the leak no longer exists. Occasionally, a brake housing may seep fluid through the housing body. Consult the manufacturer’s maintenance manual for limits, and remove any brake assembly that seeps excessively.

Proper Bolt Torque

The stress experience by the landing gear and brake system requires that all bolts are properly torqued. Bolts used to attach the brakes to the strut typically have the required torque specified in the manufacturer’s maintenance manual. Check for torque specifications that may exist for any landing gear and brake bolts, and ensure they are properly tightened. Whenever applying torque to a bolt on an aircraft, use of a calibrated torque wrench is required.

Off Aircraft Brake Servicing and Maintenance

Certain servicing and maintenance of an aircraft brake assembly is performed while it has been removed from the aircraft. A close inspection of the assembly and its many parts should be performed at this time. Some of the inspection items on a typical assembly follow.

Bolt and Threaded Connections

All bolts and threaded connections are inspected. They should be in good condition without signs of wear. Self-locking nuts should still retain their locking feature. The hardware should be what is specified in the brake manufacturer’s parts manual. Many aircraft brake bolts, for example, are not standard hardware and may be of closer tolerance or made of a different material. The demands of the high stress environment in which the brakes perform may cause brake failure if improper substitute hardware is used. Be sure to check the condition of all threads and O-ring seating areas machined into the housing. The fittings threaded into the housing must also be checked for condition.

Discs

Brake discs must be inspected for condition. Both rotating and stationary discs in a multiple disc brake can wear. Uneven wear can be an indication that the automatic adjusters may not be pulling the pressure plate back far enough to relieve all pressure on the disc stack.

Stationary discs are inspected for cracks. Cracks usually extend from the relief slots, if so equipped. On multiple disc brakes, the slots that key the disc to the torque tube must also be inspected for wear and widening. The discs should engage the torque tube without binding. The maximum width of the slots is given in the maintenance manual. Cracks or excessive key slot wear are grounds for rejection. Brake wear pads or linings must also be inspected for wear while the brake assembly is removed from the aircraft. Signs of uneven wear should be investigated and the problem corrected. The pads may be replaced if worn beyond limits as long as the stationary disc upon which they mount passes inspection. Follow the manufacturer’s procedures for inspections and for pad replacement.

Rotating discs must be similarly inspected. The general condition of the disc must be observed. Glazing can occur when a disc or part of a disc is overheated. It causes brake squeal and chatter. It is possible to resurface a glazed disc if the manufacturer allows it. Rotating discs must also be inspected in the drive key slot or drive tang area for wear and deformation. Little damage is allowed before replacement is required.

The pressure plate and back plate on multiple disc brakes must be inspected for freedom of movement, cracks, general condition, and warping. New linings may be riveted to the plates if the old linings are worn and the condition of the plate is good. Note that replacing brake pads and linings by riveting may require specific tools and technique as described in the maintenance manual to ensure secure attachment. Minor warping can be straightened on some brake assemblies.