Brake Actuating Systems (Part Two)

in Aircraft Landing Gear Systems

Boosted Brakes

In an independent braking system, the pressure applied to the brakes is only as great as the foot pressure applied to the top of the rudder pedal. Boosted brake actuating systems augment the force developed by the pilot with hydraulic system pressure when needed. The boost is only during heavy braking. It results in greater pressure applied to the brakes than the pilot alone can provide. Boosted brakes are used on medium and larger aircraft that do not require a full power brake actuating system.


A boosted brake master cylinder for each brake is mechanically attached to the rudder pedals. However, the boosted brake master cylinder operates differently. [Figure 13-96]

Figure 13-96. A master cylinder for a boosted brake system augments foot pedal pressure with aircraft system hydraulic pressure during heavy braking.

Figure 13-96. A master cylinder for a boosted brake system augments foot pedal pressure with aircraft system hydraulic pressure during heavy braking.

When the brakes are applied, the pressure from the pilot’s foot through the mechanical linkage moves the master cylinder piston in the direction to force fluid to the brakes. The initial movement closes the compensator poppet used to provide thermal expansion relief when the brakes are not applied. As the pilot pushes harder on the pedal, a spring loaded toggle moves a spool valve in the cylinder. Aircraft hydraulic system pressure flows through the valve to the back side of the piston. Pressure is increased, as is the force developed to apply the brakes.

When the pedal is released, the piston rod travels in the opposite direction, and the piston returns to the piston stop. The compensating poppet reopens. The toggle is withdrawn from the spool via linkages, and fluid pushes the spool back to expose the system return manifold port. System hydraulic fluid used to boost brake pressure returns through the port.

Power Brakes

Large and high performance aircraft are equipped with power brakes to slow, stop, and hold the aircraft. Power brake actuating systems use the aircraft hydraulic system as the source of power to apply the brakes. The pilot presses on the top of the rudder pedal for braking as with the other actuating systems. The volume and pressure of hydraulic fluid required cannot be produced by a master cylinder. Instead, a power brake control valve or brake metering valve receives the brake pedal input either directly or through linkages. The valve meters hydraulic fluid to the corresponding brake assembly in direct relation to the pressure applied to the pedal.

Figure 13-97. The orientation of components in a basic power brake system is shown in A. The general layout of an airliner power brake system is shown in B.

Figure 13-97. The orientation of components in a basic power brake system is shown in A. The general layout of an airliner power brake system is shown in B. [click image to enlarge]

Many power brake system designs are in use. Most are similar to the simplified system illustrated in Figure 13-97A. Power brake systems are constructed to facilitate graduated brake pressure control, brake pedal feel, and the necessary redundancy required in case of hydraulic system failure. Large aircraft brake systems integrate anti-skid detection and correction devices. These are necessary because wheel skid is difficult to detect on the flight deck without sensors. However, a skid can be quickly controlled automatically through pressure control of the hydraulic fluid to the brakes. Hydraulic fuses are also commonly found in power brake systems. The hostile environment around the landing gear increases the potential for a line to break or sever, a fitting to fail, or other hydraulic system malfunctions to occur where hydraulic fluid is lost en route to the brake assemblies. A fuse stops any excessive flow of fluid when detected by closing to retain the remaining fluid in the hydraulic system. Shuttle valves are used to direct flow from optional sources of fluid, such as in redundant systems or during the use of an emergency brake power source. An airliner power brake system is illustrated in Figure 13-97B.

Brake Control Valve/Brake Metering Valve

The key element in a power brake system is the brake control valve, sometimes called a brake metering valve. It responds to brake pedal input by directing aircraft system hydraulic fluid to the brakes. As pressure is increased on the brake pedal, more fluid is directed to the brake causing a higher pressure and greater braking action.

Figure 13-98. A brake metering valve from a Boeing 737. A machined slide or spool moves laterally to admit the correct amount of hydraulic system fluid to the brakes. The pressure developed is in proportion to the amount the rudder/brake pedal is depressed and the amount the slide is displaced. The slide/spool also simultaneously controls the return of fluid to the hydraulic system return manifold when brake pressure is released.

Figure 13-98. A brake metering valve from a Boeing 737. A machined slide or spool moves laterally to admit the correct amount of hydraulic system fluid to the brakes. The pressure developed is in proportion to the amount the rudder/brake pedal is depressed and the amount the slide is displaced. The slide/spool also simultaneously controls the return of fluid to the hydraulic system return manifold when brake pressure is released. [click image to enlarge]

A brake metering valve from a Boeing 737 is illustrated in Figure 13-98. The system in which it is installed is diagramed in Figure 13-99. Two sources of hydraulic pressure provide redundancy in this brake system. A brake input shaft, connected to the rudder/brake pedal through mechanical linkages, provides the position input to the metering valve. As in most brake control valves, the brake input shaft moves a tapered spool or slide in the valve so that it allows hydraulic system pressure to flow to the brakes. At the same time, the slide covers and uncovers access to the hydraulic system return port as required.

Figure 13-99. The power brake system on a Boeing 737.

Figure 13-99. The power brake system on a Boeing 737. [click image to enlarge]

When the rudder/brake pedal is depressed, the slide in the metering valve moves to the left. [Figure 13-98] It covers the return port so pressure can build in the brake system. The hydraulic supply pressure chamber is connected to the brake system pressure chamber by the movement of the slide, which due to its taper, unblocks the passage between these two. As the pedal is depressed further, the valve slide moves farther to the left. This enables more fluid to flow to the brakes due to the narrowing shape of the slide. Brake pressure increases with the additional fluid. A passage in the slide directs brake pressure fluid into a compensating chamber at the end of the slide. This acts on the end of the slide creating a return force that counters the initial slide movement and gives feel to the brake pedal. As a result, the pressure and return ports are closed and pressure proportional to the foot pressure on the pedal is held on the brakes. When the pedal is released, a return spring and compensating chamber pressure drive the slide to the right into its original position (return port open, supply pressure chamber and brake pressure chambers blocked from each other).

The metering valve operates as described simultaneously for the inboard and the outboard brakes. [Figure 13-98] The design of the link assembly is such that a single side of the metering valve can operate even if the other fails. Most brake control valves and metering valves function in a similar manner, although many are single units that supply only one brake assembly.

The auto brake, referenced in the metering valve diagram, is connected into the landing gear retraction hydraulic line. Pressurized fluid enters this port and drives the slide slightly to the left to apply the brakes automatically after takeoff. This stops the wheels from rotating when retracted into the wheel wells. Auto brake pressure is withheld from this port when the landing gear is fully stowed since the retraction system is depressurized.

Figure 13-100. The power brake system on a Boeing 737.

Figure 13-100. The power brake system on a Boeing 737. [click image to enlarge]

The majority of the rudder/brake pedal feel is supplied by the brake control or brake metering valve in a power brake system. Many aircraft refine the feel of the pedal with an additional feel unit. The brake valve feel augmentation unit, in the above system, uses a series of internal springs and pistons of various sizes to create a force on the brake input shaft movement. This provides feel back through the mechanical linkages consistent with the amount of rudder/ brake pedal applied. The request for light braking with slight pedal depression results in a light feel to the pedal and a harder resistance feel when the pedals are pushed harder during heavy braking. [Figure 13-100]