Aircraft Hardware – Rivets and Fasteners (Part Eight)

in Aircraft Materials Processes and Hardware

Riveted and Rivetless Nutplates

When access to the back of a screw or bolt installation is impractical, riveted or rivetless nutplates are used to secure the connection of panels. One example in aircraft this technique is especially useful is to secure the floorboards to the stringers and to each other.


Nuts that are made to be riveted in place in aircraft are called nutplates. Their purpose is to allow bolts and screws to be inserted without having to hold the nut. They are permanently mounted to enable inspection panels and access doors to be easily removed and installed. When many screws are used on a panel, to make installation easier, normally floating anchor nuts are used. The floating anchor nut fits into a small bracket which is riveted to the aircraft skin. The nut is free to move, which makes it much easier to align it with the screw. For production ease, sometimes ganged anchor nuts are used for inspection panels. Ganged anchor nuts allow the nuts to float in a channel, making alignment with the screw easy.

Self-locking nutplates are made under several standards and come in several shapes and sizes. Figure 5-62 shows an MS21078 two-lug nutplate with a nonmetallic insert, and an MS21047 lightweight, all-metal, 450 °F (232 °C) nutplate. Nutplates can also have three riveting points if the added strength is required.

Figure 5-62. Various nutplates.

Figure 5-62. Various nutplates.


This is the trade name of a hollow, blind rivet made of 6053 aluminum alloy, counterbored and threaded on the inside. Rivnuts can be installed by one person using of the material. The Rivnut is threaded on the mandrel of the heading tool and inserted in the rivet hole. The heading tool is held at right angles to the material, the handle is squeezed, and the mandrel crank is turned clockwise after each stroke. Continue squeezing the handle and turning the mandrel crank of the heading tool until a solid resistance is felt, which indicates that the rivet is set.

The Rivnut is used primarily as a nut plate and in the attachment of deicer boots to the leading edges of wings. It may be used as a rivet in secondary structures or for the attachment of accessories such as brackets, fairings, instruments, or soundproofing materials.

Rivnuts are manufactured in two head types, each with two ends: the flathead with open or closed end, and the countersunk head with open or closed end. All Rivnuts, except the thin head countersunk type, are available with or without small projections (keys) attached to the head to keep the Rivnut from turning. Keyed Rivnuts are used as a nut plate, while those without keys are used for straight blind riveting repairs where no torque loads are imposed. A keyway cutter is needed when installing Rivnuts which have keys.

The countersunk style Rivnut is made with two different head angles: the 100° with 0.048 and 0.063 inch head thickness, and the 115° with 0.063 inch head thickness. Each of these head styles is made in three sizes: 6-32, 8-32, and 10-32. These numbers represent the machine screw size of the threads on the inside of the Rivnut. The actual outside diameters of the shanks are 3⁄16 inch for the 6-32 size, 7⁄32 inch for the 8-32 size, and 1⁄4 inch for the 10-32 size.

Open end Rivnuts are the most widely used and are recommended in preference to the closed end type wherever possible. However, closed end Rivnuts must be used in pressurized compartments.

Rivnuts are manufactured in six grip ranges. The minimum grip length is indicated by a plain head, and the next higher grip length by one radial dash mark on the head. Each succeeding grip range is indicated by an additional radial dash mark until five marks indicate the maximum range.

Notice in Figure 5-63 that some part number codes consist of a “6,” an “8,” or a “10,” a “dash,” and two or three more numbers. In some, the dash is replaced by the letters “K” or “KB.” The first number indicates the machine screw size of the thread, and the last two or three numbers indicate the maximum grip length in thousandths of an inch. A dash between the figures indicates that the Rivnut has an open end and is keyless; a “B” in place of the dash means it has a closed end and is keyless; a “K” means it has an open end and has a key; and a “KB” indicates that it has a closed end and a key. If the last two or three numbers are divisible by five, the Rivnut has a flathead; if they are not divisible by five, the Rivnut has a countersunk head.

Figure 5-63. Rivnut data chart.

Figure 5-63. Rivnut data chart.

An example of a part number code is:


10 = Grip length

KB = Closed end and key

106 = Screw and thread size